
cryptography

Article

Physical Unclonable Function (PUF)-Based e-Cash
Transaction Protocol (PUF-Cash)

Jeff Calhoun 1, Cyrus Minwalla 2 , Charles Helmich 1, Fareena Saqib 3, Wenjie Che 4 and
Jim Plusquellic 1,*

1 Department of Electrical and Computer Engineering, University of New Mexico,
Albuquerque, NM 87131, USA

2 Bank of Canada, 234 Wellington St., Ottawa, ON K1A 0G9, Canada
3 Department of Electrical and Computer Engineering, University of North Carolina at Charlotte (UNCC),

Charlotte, NC 28223, USA
4 Klipsch School of Electrical and Computer Engineering, New Mexico State University,

Las Cruces, NM 88003, USA
* Correspondence: jimp@ece.unm.edu; Tel.: +1-240-475-1882

Received: 6 June 2019; Accepted: 16 July 2019; Published: 20 July 2019
����������
�������

Abstract: Electronic money (e-money or e-Cash) is the digital representation of physical banknotes
augmented by added use cases of online and remote payments. This paper presents a novel,
anonymous e-money transaction protocol, built based on physical unclonable functions (PUFs), titled
PUF-Cash. PUF-Cash preserves user anonymity while enabling both offline and online transaction
capability. The PUF’s privacy-preserving property is leveraged to create blinded tokens for transaction
anonymity while its hardware-based challenge–response pair authentication scheme provides a
secure solution that is impervious to typical protocol attacks. The scheme is inspired from Chaum’s
Digicash work in the 1980s and subsequent improvements. Unlike Chaum’s scheme, which relies on
Rivest, Shamir and Adlemans’s (RSA’s) multiplicative homomorphic property to provide anonymity,
the anonymity scheme proposed in this paper leverages the random and unique statistical properties
of synthesized integrated circuits. PUF-Cash is implemented and demonstrated using a set of Xilinx
Zynq Field Programmable Gate Arrays (FPGAs). Experimental results suggest that the hardware
footprint of the solution is small, and the transaction rate is suitable for large-scale applications.
An in-depth security analysis suggests that the solution possesses excellent statistical qualities in
the generated authentication and encryption keys, and it is robust against a variety of attack vectors
including model-building, impersonation, and side-channel variants.

Keywords: electronic cash; cryptographic protocol; physical unclonable function (PUF)

1. Introduction

The global economic engine relies on the safe and efficient transfer of value for goods received and
services rendered. Electronic means of payments have spawned a hive of economic and technical activity
across the world. The e-commerce landscape is profligate with electronic payment (e-payment) systems,
ranging from solutions by dedicated payment processors (Visa, Mastercard) to technology partnerships
(ApplePay, Google Wallet, Paypal) to new entrants in the financial services business (Square, AliPay,
Tencent). Representation of value varies from intrasystem accounts to credit transfers between
institutions. In all such mechanisms, the value representation supersedes privacy considerations.
Moreover, the providers are incentivized to limit bilateral peer-to-peer (P2P) transfers as it interferes
directly with their business model.

Schemes based on distributed ledger technology (DLT) enable P2P payments in a decentralized and
pseudo-anonymous fashion. As such, they are particularly popular in academia and industry. However,

Cryptography 2019, 3, 18; doi:10.3390/cryptography3030018 www.mdpi.com/journal/cryptography

http://www.mdpi.com/journal/cryptography
http://www.mdpi.com
https://orcid.org/0000-0002-9569-664X
https://orcid.org/0000-0002-1876-117X
http://dx.doi.org/10.3390/cryptography3030018
http://www.mdpi.com/journal/cryptography
https://www.mdpi.com/2410-387X/3/3/18?type=check_update&version=2


Cryptography 2019, 3, 18 2 of 24

the consensus mechanism of DLT systems places practical limits on transaction rate, scalability, and user
participation. In addition, fully decentralized systems lack remediation and nonrepudiation capabilities;
these mechanisms are commonly offered by conventional payment platforms to protect consumers
against fraud, malice, and unscrupulous merchant behavior. Finally, entry into a DLT-based system
is nontrivial. For most users lacking detailed technical knowledge, entry is mediated by exchanges,
where legitimate services are required to comply with Know Your Customer (KYC) and Anti-Money
Laundering (AML) legislation, reducing or outright eliminating the pseudo-anonymity inherent in
DLT systems, while illegitimate exchanges may act maliciously and with impunity.

Electronic money (e-money) schemes based on privacy-preserving components such as blind
signatures and zero-knowledge proofs can preserve anonymity in online payments and P2P transactions.
The e-money scheme proposed herein is unique in its reliance on hardware physical unclonable functions
(PUFs). The chief benefit of PUFs in the e-money scheme is the preservation of user privacy from the
Original Equipment Manufacturers (OEMs) and suppliers of physical devices, preserving trust in the
supply chain and enforcing the user’s right to determine the trust authority post-factum.

Authentication, encryption, privacy, and anonymity play central roles in e-money. PUFs enable a
challenge–response pair (CRP) form of authentication, which, by itself, vastly improves on weak user
password methods of authentication. Although a wide range of PUF architectures have been proposed
since their introduction in 2002 [1], most are characterized as having a relatively small CRP space.
Strong PUFs, on the other hand, possess a CRP space that is exponential, making them better suited
for both authentication and encryption key generation roles. Among the PUF architectures proposed,
several have been used in privacy-preserving authentication protocols. However, to our knowledge,
no PUF-based e-money protocols or schemes capable of providing anonymity have been proposed
to date.

In this paper, we present an e-money transaction protocol that leverages a previously proposed
hardware embedded delay PUF called Hardware Embedded Delay PUF termed HELP [2] and
previously developed authentication protocol [3] that have been suitably modified for the present
application. HELP exhibits several desirable characteristics, including an exponential CRP space and
model building resistance, and it can be configured to enable both privacy and anonymity. The highly
unique statistical characteristics of the authentication bit-strings generated by HELP enable privacy as
described in [3].

HELP’s privacy preserving characteristic is extended here to allow a trusted authority to confirm
that a transaction is valid without revealing the identity of the authenticating customer. The first
solution to this important e-money security property was proposed by Chaum [4] utilizing RSA’s
multiplicative homomorphic property to generate blind signatures. The PUF-based solution presented
in this paper, on the other hand, uses the intrinsic entropy available in the PUF’s bit-strings to implement
anonymity. PUF-Cash leverages a trusted third party (TTP) to handle fielded chip anonymization
and dispute resolution, thus providing privacy and protection between customers in the protocol’s
message exchanges.

The proposed protocol relies on Exclusive OR (XOR), symmetric encryption (128-bit Advanced
Encryption Standard (AES)), and Diffie–Hellman key exchange (DHE) to remain as lightweight as
possible. This enables the final device to be implemented in a low power, embedded hardware token
format that is mobile and/or wearable. Although the proposed system has limitations (i.e., the system
is restricted to unitary tokens and transitivity is limited), it is shown to possess all the required security
properties of e-Cash.

The specific contributions of this paper over the current state-of-the-art are given as follows:

• PUF-Cash is the first e-Cash protocol proposed where authentication bit-strings, encryption
keys, and e-Cash tokens are based on random physical processes, thereby making it difficult
for adversaries to falsely authenticate or break into fielded devices to steal, predict, and/or
clone tokens.



Cryptography 2019, 3, 18 3 of 24

• A novel, anonymous enrollment database scheme is proposed to blind transfers between Alice
and Bob, thereby protecting anonymity. In addition, the protocol preserves privacy during
authentication and in all subsequent message exchanges between customers and trusted parties,
preventing adversaries from tracking user transactions.

• A novel PUF-based session key generation technique is proposed that provides high levels of
reliability across environmental temperature and supply voltage variations.

• Transactions are bilateral, allowing customers to transfer value locally without requiring
connectivity to third parties or any manner of online capability.

• All transaction processing operations are constant time or linear, enabling fast response times,
high performance, and low power consumption on the fielded devices, the trusted third party
(TTP), and bank servers.

The remaining components of this paper are organized as follows. Section 2 provides a literature
review. Section 3 presents an overview of HELP, focusing on its authentication and bit-string generation
processes. Section 4 describes the proposed e-Cash protocol, while Section 5 investigates its security
properties. Section 6 presents experimental results, and conclusions are drawn in Section 7.

2. Literature Review

2.1. Electronic Cash

Any electronic version of cash (e-Cash) must contend with two primary problems of fiat currency,
namely counterfeiting and double-spending. Modern e-Cash schemes incorporate cryptographic
tools such as digital signatures, secret sharing, and zero-knowledge proofs to mitigate the risk of
both actions.

The very first e-Cash system was devised by Chaum [4,5] and refined into a complete transfer
protocol by Chaum, Fiat, and Naor (CFN) [6]. It relied on blind signatures to preserve anonymity and
a cut-and-choose shared secret for the coin exchange. The blind signature scheme is based on RSA
polynomial primitives, and it reveals the identity of the user on double-spend, thus detecting but not
preventing double-spending. A CFN e-coin consumes O(k2) bits of memory, where k is the security
parameter. Batch RSA techniques to improve transaction efficiency were explored by Schoenmaker [7],
but it was Brands’ e-Cash scheme [8] that presented a first dramatic improvement over CFN. Brands
used groups of prime order for the blind signature generation and replaced cut-and-choose proofs
with a more efficient scheme based on the Sigma Protocol [9].

The original Chaumian e-Cash and variants, as conceived, represented indivisible e-coins.
An important breakthrough was achieved by Camenisch, Hohenberger, and Lysanskaya (CHL) in
developing divisible e-Cash [10,11]. In CHL e-Cash, a pseudo-random function could generate serial
numbers from a single seed, provided that the user could prove to the merchant that the value w
was within the finite range as supplied by the Bank. The range proof requires Fujisaki–Okamoto
commitments [11] and consumes O(k + log W) space, where W-1 is the upper bound on w. CHL e-Cash
uses interpolation over a straight line in the exponent to catch double-spending. It also embeds a
non-interactive zero-knowledge proof of the user’s secret key in each e-coin to prevent the bank from
framing the user. Okamato also developed a divisible e-Cash scheme using his blind signature commit
mechanism, although e-coins can only be spent in powers of two [12].

Recent advances in quantum hard cryptography have also made it possible to implement
blind signatures with lattice-based asymmetric key exchanges [13]. A hardware implementation
of CHL e-Cash was developed for mobile devices utilizing the ARM TrustZone trusted computing
environment [14]. Use of hardware electronic wallets in cell phones or mobile devices for electronic
transactions is described by Sakalauskas [15].



Cryptography 2019, 3, 18 4 of 24

2.2. Physical Unclonable Function (PUF)-Based Authentication and Key Generation

Physical unclonable functions (PUFs) are hardware security primitives capable of generating long
sequences of random, but reproducible, bit-strings on-demand and without requiring device secrets to
be stored in any type of nonvolatile memory (NVM) [1]. Regeneration of secret keys and bit-strings
can be undertaken by a fielded chip under adverse environmental conditions.

Unlike cryptographically secure hash functions, which leverage the infeasibility of computing
inverses for special functions, a PUF’s strength is derived from the random behavior of physical
processes. Integrated circuits containing a PUF are referred to as devices. Although modern
semiconductor manufacturing facilities are optimized to produce exact replicas of the devices (chips),
tolerances in the manufacturing process are nonzero, and small levels of process variations are always
present. These process variations change the signal behavior of the chip in subtle ways (e.g., the delay
of a signal propagating through a combinational logic block is somewhat different from one copy of
the chip to another). The PUF architecture naturally includes a source of entropy (i.e., a set of chip
signals that randomly vary within a limit), a method to measure them, and, in some cases, to create
digital values that represent their magnitude. The randomness of signal variations introduced by
process variation effects creates a strong, and sometimes very large, random sample space. The keys
and bit-strings produced by the PUF are, therefore, very difficult, if not impossible, to predict.

PUF applications, such as authentication, typically expose the generated bit-strings to the outside
world, which in turn makes the PUF more vulnerable to attacks. Statistical and/or machine learning
systems can attempt to build a model of the PUF’s challenge-response behavior based on successive
queries. Such methods have been demonstrated to be successful [16]. However, as PUF architectures
evolve to increased complexity, with built-in countermeasures to model-building attacks, such attacks
become increasingly difficult to execute.

3. HELP and Authentication Protocols

Selected components of HELP and the associated authentication and session key generation
protocols are discussed in this section. Additional details are available in previous work [3,17]. In the
following, we use the terms HELP to refer to the entire PUF architecture, HELP algorithm to refer to
the post-processing operations carried out to generate authentication bit-strings and keys, and HELP
protocol in reference to the operations and messages exchanged between the device and server.

3.1. PUF Architecture and Soft Data

HELP generates secret keys and bit-strings from variations that occur in the delay of signals
propagating along paths in combinational logic circuits, such as those shown in the schematic of
Figure 1. A launch–capture timing procedure, using two clocks, Clk1 and Clk2, and associated flip-flops
(FFs), provides high-resolution digitized delay values for a set of paths. The term PUF Numbers, or PN,
is used as a generic reference to digital numbers that capture the magnitude of a measured signal, such
as propagation delay. PN define a class of PUF data referred to as soft data, which is heavily leveraged
in the proposed PUF-Cash protocol.

Cryptography 2019, 4, x FOR PEER REVIEW 4 of 24 

 

Physical unclonable functions (PUFs) are hardware security primitives capable of generating 
long sequences of random, but reproducible, bit-strings on-demand and without requiring device 
secrets to be stored in any type of nonvolatile memory (NVM) [1]. Regeneration of secret keys and 
bit-strings can be undertaken by a fielded chip under adverse environmental conditions. 

Unlike cryptographically secure hash functions, which leverage the infeasibility of computing 
inverses for special functions, a PUF’s strength is derived from the random behavior of physical 
processes. Integrated circuits containing a PUF are referred to as devices. Although modern 
semiconductor manufacturing facilities are optimized to produce exact replicas of the devices (chips), 
tolerances in the manufacturing process are nonzero, and small levels of process variations are always 
present. These process variations change the signal behavior of the chip in subtle ways (e.g., the delay 
of a signal propagating through a combinational logic block is somewhat different from one copy of 
the chip to another). The PUF architecture naturally includes a source of entropy (i.e., a set of chip 
signals that randomly vary within a limit), a method to measure them, and, in some cases, to create 
digital values that represent their magnitude. The randomness of signal variations introduced by 
process variation effects creates a strong, and sometimes very large, random sample space. The keys 
and bit-strings produced by the PUF are, therefore, very difficult, if not impossible, to predict. 

PUF applications, such as authentication, typically expose the generated bit-strings to the 
outside world, which in turn makes the PUF more vulnerable to attacks. Statistical and/or machine 
learning systems can attempt to build a model of the PUF’s challenge-response behavior based on 
successive queries. Such methods have been demonstrated to be successful [16]. However, as PUF 
architectures evolve to increased complexity, with built-in countermeasures to model-building 
attacks, such attacks become increasingly difficult to execute. 

3. HELP and Authentication Protocols 

Selected components of HELP and the associated authentication and session key generation 
protocols are discussed in this section. Additional details are available in previous work [3,17]. In the 
following, we use the terms HELP to refer to the entire PUF architecture, HELP algorithm to refer to 
the post-processing operations carried out to generate authentication bit-strings and keys, and HELP 
protocol in reference to the operations and messages exchanged between the device and server. 

3.1. PUF Architecture and Soft Data 

HELP generates secret keys and bit-strings from variations that occur in the delay of signals 
propagating along paths in combinational logic circuits, such as those shown in the schematic of 
Figure 1. A launch–capture timing procedure, using two clocks, Clk1 and Clk2, and associated flip-
flops (FFs), provides high-resolution digitized delay values for a set of paths. The term PUF Numbers, 
or PN, is used as a generic reference to digital numbers that capture the magnitude of a measured 
signal, such as propagation delay. PN define a class of PUF data referred to as soft data, which is 
heavily leveraged in the proposed PUF-Cash protocol. 

 

Figure 1. Launch-capture timing of paths through combinational logic used by HELP. Figure 1. Launch-capture timing of paths through combinational logic used by HELP.



Cryptography 2019, 3, 18 5 of 24

3.2. Enrollment and Regeneration

PUFs are well-suited for a challenge–response pair (CRP) authentication sequence, where the
challenge and response are defined as two bit-strings of ‘0’s and ‘1’s. PUF-based authentication
protocols are characterized as having an enrollment and authentication phase. During enrollment,
a trusted authority registers a new PUF by recording the CRPs for the fielded chip in a secure database.
This enrollment database is constructed with a relatively small set of CRPs sampled from a much larger
(exponential) CRP space. PUFs that provide an exponential space naturally (i.e., without leveraging
keyed hash functions to expand the CRP space) are called strong PUFs.

During regeneration, the fielded device supplies credentials to a trusted authority for
authentication. Here, the PUF is tasked with regenerating a subset of the responses stored during
enrollment, which are then compared with the enrollment responses by the authenticating agent.
The regenerated bit-strings commonly have bit-flip errors. Some authentication protocols allow small
numbers of bit-flip errors to occur, while others employ error correction or error avoidance techniques
to correct or avoid them, respectively. HELP, in particular, relies on an error avoidance scheme
employed during response verification.

The enrollment process used by HELP differs from the prior description in the following manner:
instead of storing CRPs in the secure database, HELP stores PN, the digitized soft data values associated
with the measured path delays. A sample database is shown in Figure 2 where the rows store data for
each fielded chip and the columns store digitized rising (PNR) and falling (PNF) path delays as n-bit
fixed-point numbers, typically ranging in value between 100 and 500.

Cryptography 2019, 4, x FOR PEER REVIEW 5 of 24 

 

3.2. Enrollment and Regeneration 

PUFs are well-suited for a challenge–response pair (CRP) authentication sequence, where the 
challenge and response are defined as two bit-strings of ‘0’s and ‘1’s. PUF-based authentication 
protocols are characterized as having an enrollment and authentication phase. During enrollment, a 
trusted authority registers a new PUF by recording the CRPs for the fielded chip in a secure database. 
This enrollment database is constructed with a relatively small set of CRPs sampled from a much 
larger (exponential) CRP space. PUFs that provide an exponential space naturally (i.e., without 
leveraging keyed hash functions to expand the CRP space) are called strong PUFs. 

During regeneration, the fielded device supplies credentials to a trusted authority for 
authentication. Here, the PUF is tasked with regenerating a subset of the responses stored during 
enrollment, which are then compared with the enrollment responses by the authenticating agent. The 
regenerated bit-strings commonly have bit-flip errors. Some authentication protocols allow small 
numbers of bit-flip errors to occur, while others employ error correction or error avoidance 
techniques to correct or avoid them, respectively. HELP, in particular, relies on an error avoidance 
scheme employed during response verification. 

The enrollment process used by HELP differs from the prior description in the following 
manner: instead of storing CRPs in the secure database, HELP stores PN, the digitized soft data 
values associated with the measured path delays. A sample database is shown in Figure 2 where the 
rows store data for each fielded chip and the columns store digitized rising (PNR) and falling (PNF) 
path delays as n-bit fixed-point numbers, typically ranging in value between 100 and 500. 

 

Figure 2. HELP PN database (DB) created during enrollment. 

There are several significant benefits to storing PN instead of response bit-strings [18–23]. First, 
the relationship of PN to response bit-strings is one-to-many (i.e., a large number of response bit-
strings can be generated from a much smaller set of PN). Second, HELP generates helper data during 
regeneration, which is ancillary data designed to assist the PUF architecture in precisely reproducing 
keys and bit-strings. The PN stored in the database allow the server to generate its own helper data 
by running a software version of the HELP algorithm. A novel error avoidance scheme that leverages 
both the fielded device and server-generated helper data provides significant improvements against 
bit-flip errors. Third, a novel correlation-based authentication method can allow a server to 
authenticate a fielded device by comparing the device and server-generated helper data only, thereby 
completely eliminating the need to exchange response bit-strings, which in turn, makes the process 
of building a predictive model that clones the device much more difficult, if not outright impossible. 

The key generation and session authentications algorithms are designed to be fast, low-energy, 
and reliable. These goals are achieved by using only linear operations to process the stored and 
regenerated PN into session keys and authentication bit-strings. Other PUFs [1,18–23] can be used 
instead of HELP to meet these goals as long as they possess the following properties: 

• The PUF is a strong PUF with an exponential search space for both the input challenges and 
response bit-strings. 

Figure 2. HELP PN database (DB) created during enrollment.

There are several significant benefits to storing PN instead of response bit-strings [18–23]. First,
the relationship of PN to response bit-strings is one-to-many (i.e., a large number of response bit-strings
can be generated from a much smaller set of PN). Second, HELP generates helper data during
regeneration, which is ancillary data designed to assist the PUF architecture in precisely reproducing
keys and bit-strings. The PN stored in the database allow the server to generate its own helper data by
running a software version of the HELP algorithm. A novel error avoidance scheme that leverages both
the fielded device and server-generated helper data provides significant improvements against bit-flip
errors. Third, a novel correlation-based authentication method can allow a server to authenticate a
fielded device by comparing the device and server-generated helper data only, thereby completely
eliminating the need to exchange response bit-strings, which in turn, makes the process of building a
predictive model that clones the device much more difficult, if not outright impossible.

The key generation and session authentications algorithms are designed to be fast, low-energy,
and reliable. These goals are achieved by using only linear operations to process the stored and
regenerated PN into session keys and authentication bit-strings. Other PUFs [1,18–23] can be used
instead of HELP to meet these goals as long as they possess the following properties:



Cryptography 2019, 3, 18 6 of 24

• The PUF is a strong PUF with an exponential search space for both the input challenges and
response bit-strings.

• The PUF generates soft data that can be stored in the enrollment database (e.g., Static Random
Access Memory(SRAM) PUFs are excluded).

• The PUF is capable of generating and utilizing an anonymous enrollment database.
• The soft data (PN) associated with the PUF allows a fast, linear transformation to be applied

to correct the PN for changes induced by environmental temperature and/or supply voltage
variations, which, in turn, enables fast bit-flip avoidance techniques to be used to provide reliable
authentication bit-strings and session keys. The time consumed by complex error correction
methods, although suitable for one-off authentication and session key generation, are not suitable
here where short transactions times are critical.

3.3. Bit-String Generation

Authentication and key generation between the fielded device and the central authority (“the bank”)
is accomplished by relying on three techniques: Cobra [17], for correlation-based robust authentication;
DHD_Authen [3], for dual-helper-data authentication; and DHD_Key, for dual-helper-data key
generation. Each of these techniques uses a bit-flip error avoidance scheme to establish trust and
provide encrypted communications between the device and the bank. The error avoidance scheme
is designed to improve the reproducibility of authentication bit-strings and keys on the server and
devices, but it additionally acts as a natural source of randomness, improving privacy and protection
against machine learning based attacks.

Error avoidance is a multilayered approach, with Figure 3a illustrating concepts at the lower layer.
The graph plots a subset of 18 path delays (PN) measured by device C1 during enrollment (black)
and regeneration (red) along the x-axis. The PN shown here have already been processed to reduce
adverse temperature–voltage variations and path length bias using procedures defined by the HELP
algorithm. The objectives of these procedures are to make the black and red data points similar in value
(i.e., to make the path delays independent of the temperature and supply voltage conditions under
which they are measured), and to ensure that all PN are bounded by a fixed range, given in the graph
as 0 to 20. Reference [3] provides details on these preprocessing components of the HELP algorithm.

Cryptography 2019, 4, x FOR PEER REVIEW 6 of 24 

 

• The PUF generates soft data that can be stored in the enrollment database (e.g., Static Random 
Access Memory(SRAM) PUFs are excluded). 

• The PUF is capable of generating and utilizing an anonymous enrollment database. 
• The soft data (PN) associated with the PUF allows a fast, linear transformation to be applied to 

correct the PN for changes induced by environmental temperature and/or supply voltage 
variations, which, in turn, enables fast bit-flip avoidance techniques to be used to provide 
reliable authentication bit-strings and session keys. The time consumed by complex error 
correction methods, although suitable for one-off authentication and session key generation, are 
not suitable here where short transactions times are critical. 

3.3. Bit-String Generation 

Authentication and key generation between the fielded device and the central authority (“the 
bank”) is accomplished by relying on three techniques: Cobra [17], for correlation-based robust 
authentication; DHD_Authen [3], for dual-helper-data authentication; and DHD_Key, for dual-
helper-data key generation. Each of these techniques uses a bit-flip error avoidance scheme to 
establish trust and provide encrypted communications between the device and the bank. The error 
avoidance scheme is designed to improve the reproducibility of authentication bit-strings and keys 
on the server and devices, but it additionally acts as a natural source of randomness, improving 
privacy and protection against machine learning based attacks. 

Error avoidance is a multilayered approach, with Figure 3a illustrating concepts at the lower 
layer. The graph plots a subset of 18 path delays (PN) measured by device C1 during enrollment 
(black) and regeneration (red) along the x-axis. The PN shown here have already been processed to 
reduce adverse temperature–voltage variations and path length bias using procedures defined by the 
HELP algorithm. The objectives of these procedures are to make the black and red data points similar 
in value (i.e., to make the path delays independent of the temperature and supply voltage conditions 
under which they are measured), and to ensure that all PN are bounded by a fixed range, given in 
the graph as 0 to 20. Reference [3] provides details on these preprocessing components of the HELP 
algorithm. 

The graph and annotations in Figure 3 illustrate the process implemented within the HELP 
algorithm to discretize the floating point PN into a response bit-string, called a single-strong-bit-
string (SSBS), and a helper data bit-string, referred to as single-helper-data (SHD). Here, a PN is 
assigned a bit value of ‘0′ in the SSBS if its value is smaller than 10 and a ‘1′ otherwise. The ‘0’ and ‘1’ 
regions are each further partitioned into strong and weak regions for generating the SHD. For 
example, the regions between 0–2, 8–12, and 18-20, inclusive, are classified as ‘weak’, while the 
regions between 2–8 and between 12–18 are classified as ‘strong’. 

 
Figure 3. (a) PN for chip C1 measured during enrollment (black) and regeneration (red), (b)
Single-helper-data (SHDB) and single-strong-bit-string (SSBSB) generated from enrollment data stored
in a secure database, and (c) SHDC and SSBSC generated by the device in the field during regeneration.



Cryptography 2019, 3, 18 7 of 24

The graph and annotations in Figure 3 illustrate the process implemented within the HELP
algorithm to discretize the floating point PN into a response bit-string, called a single-strong-bit-string
(SSBS), and a helper data bit-string, referred to as single-helper-data (SHD). Here, a PN is assigned a
bit value of ‘0′ in the SSBS if its value is smaller than 10 and a ‘1′ otherwise. The ‘0’ and ‘1’ regions are
each further partitioned into strong and weak regions for generating the SHD. For example, the regions
between 0–2, 8–12, and 18-20, inclusive, are classified as ‘weak’, while the regions between 2–8 and
between 12–18 are classified as ‘strong’.

The term ‘weak’ is used because PN that fall within this region are close to 0, 10, or 20. The values
0, 10, and 20 are referred to as bit-flip lines because the bit value assigned to the SSBS changes value on
either side of these lines. For example, PN above 10 are assigned ‘1′ while those below this line are
assigned ‘0′. Similar behavior occurs at 0 and 20 because the HELP algorithm applies a modulus to the
PN, which wraps values into the opposing ‘0′ and ‘1′ regions.

Given these bit-flip lines, the key observation is that PN close to a bit-flip line are less reliable
when regenerated in the field, due to noise, which can cause the regenerated PN to be slightly different
than the enrollment PN (noise is apparent in every black–red pairing of PN in the graph). Therefore,
PN close to the bit flip lines can produce different response bits in the black server-generated SSBS and
in the red device-regenerated SSBS. In contrast, the strong regions provide higher resilience to bit-flip
errors because the noise levels must be much larger for a bit-flip error to occur.

The SHD and SSBS bit-strings in Figure 3b,c are constructed using the data from the graph in
Figure 3a. The terms SHDB and SSBSB as well as SHDC and SSBSC are used to refer to bank (server)
and chip regenerated bit-strings, respectively. Note that the SSBS are shorter in length than the SHD
because only PN classified as strong by the SHD bit-string are included in the SSBS bit-string.

The term ‘single’ is used in reference to the bit-strings shown in Figure 3b,c because the algorithm
uses only server-generated PN or only device-regenerated PN to construct the bit-strings. As we will
show, a more resilient bit-flip avoidance scheme can be constructed when all four bit-strings are used
together. The technique is referred to as the dual-helper-data (DHD) scheme, as described below.

3.4. Device Authentication Using Cobra

The server (bank) authenticates the device using a privacy-preserving technique called Cobra.
Cobra uses only the SHD generated by the device (SHDC) for authentication (i.e., the device-generated
SSBSC is not transmitted to the server). The process is illustrated in Figure 4a showing the fielded chip
SHDC in red, which is transmitted to the bank, and the SHDBi computed by the bank using PN stored
in its enrollment database. The bank pairs the SHDC with each of the SHDBi and then computes a
correlation coefficient (CCi) using the bitwise Exclusive Not-OR (XNOR) operator as:

CCi =
2048∑
j=1

(
SHDCj ⊕ SHDBij

)
The CCi simply counts the number of bits that match in the two bit-strings. The two largest CCis,

x and y, are selected and used to compute a percentage-change correlation coefficient (PCC) as:

PCC =
CCX −CCY

CCX
× 100

If the PCC exceeds a fixed threshold (e.g., 10%), then the chip ID from the enrollment database
with the largest CC is treated as the authenticating chip and authentication succeeds. Typical values
for the PCC in our hardware experiments are 25%, with the largest CC exceeding 1800 matching bits.

The technique proposed for Cobra works because the bank-generated and device-generated SSBS
‘track’ each other; therefore, the classification of the SSBS bits as weak and strong in the SHDC and
SHDB are highly correlated. For example, the same classification of weak and strong bits occurs 16
times for the 18 PN shown in Figure 3. In contrast, the PN produced by other chips Ci are impacted



Cryptography 2019, 3, 18 8 of 24

by within-die variations (and noise), which reduces the correlation between the SHDC and their
SHDBi significantly.

Cryptography 2019, 4, x FOR PEER REVIEW 7 of 24 

 

Figure 3. (a) PN for chip C1 measured during enrollment (black) and regeneration (red), (b) Single-
helper-data (SHDB) and single-strong-bit-string (SSBSB) generated from enrollment data stored in a 
secure database, and (c) SHDC and SSBSC generated by the device in the field during regeneration. 

The term ‘weak’ is used because PN that fall within this region are close to 0, 10, or 20. The values 
0, 10, and 20 are referred to as bit-flip lines because the bit value assigned to the SSBS changes value 
on either side of these lines. For example, PN above 10 are assigned ‘1′ while those below this line are 
assigned ‘0′. Similar behavior occurs at 0 and 20 because the HELP algorithm applies a modulus to 
the PN, which wraps values into the opposing ‘0′ and ‘1′ regions. 

Given these bit-flip lines, the key observation is that PN close to a bit-flip line are less reliable 
when regenerated in the field, due to noise, which can cause the regenerated PN to be slightly 
different than the enrollment PN (noise is apparent in every black–red pairing of PN in the graph). 
Therefore, PN close to the bit flip lines can produce different response bits in the black server-
generated SSBS and in the red device-regenerated SSBS. In contrast, the strong regions provide higher 
resilience to bit-flip errors because the noise levels must be much larger for a bit-flip error to occur. 

The SHD and SSBS bit-strings in Figure 3b,c are constructed using the data from the graph in 
Figure 3a. The terms SHDB and SSBSB as well as SHDC and SSBSC are used to refer to bank (server) 
and chip regenerated bit-strings, respectively. Note that the SSBS are shorter in length than the SHD 
because only PN classified as strong by the SHD bit-string are included in the SSBS bit-string. 

The term ‘single’ is used in reference to the bit-strings shown in Figure 3b,c because the 
algorithm uses only server-generated PN or only device-regenerated PN to construct the bit-strings. 
As we will show, a more resilient bit-flip avoidance scheme can be constructed when all four bit-
strings are used together. The technique is referred to as the dual-helper-data (DHD) scheme, as 
described below. 

3.4. Device Authentication Using Cobra 

The server (bank) authenticates the device using a privacy-preserving technique called Cobra. 
Cobra uses only the SHD generated by the device (SHDC) for authentication (i.e., the device-
generated SSBSC is not transmitted to the server). The process is illustrated in Figure 4a showing the 
fielded chip SHDC in red, which is transmitted to the bank, and the SHDBi computed by the bank 
using PN stored in its enrollment database. The bank pairs the SHDC with each of the SHDBi and then 
computes a correlation coefficient (CCi) using the bitwise Exclusive Not-OR (XNOR) operator as: CC =  ∑ SHD  ⊕  SHD    

 

Figure 4. Bit-string construction algorithms (a) Cobra for device authentication and (b) DHD_Authen 
for server authentication. 

Figure 4. Bit-string construction algorithms (a) Cobra for device authentication and (b) DHD_Authen
for server authentication.

3.5. Bank Authentication Using DHD_Authen

The successful completion of device authentication both authenticates and identifies the device
to the server. Once completed, the device then carries out a server authentication operation using
the DHD_Authen process shown in Figure 4b. Unlike Cobra, server authentication requires both the
SHDB and SSBSB to be transmitted to the device. Note that even though the response bit-string (SSBSB)
is revealed to the adversary in this case, it is not possible to model-build the device using the server
enrollment data for three reasons. First, the adversary must first succeed with device authentication
before server authentication is performed. Second, the server can detect attempts by adversaries to
repeatedly request SSBSB for a specific chip and refuse to interact with the adversary. And third,
previous work shows that model-building is not possible even when the adversary has unrestricted
access to collect SSBS from the device [24]. So, it follows that a successful attack using a limited number
of SSBSB provided by the bank would be highly unlikely.

From Figure 4b, the DHD_Authen fetches the SHDB and SSBSB from the bank, as well as the
challenges (not shown). These bit-strings are constructed by the bank using a software version of
the HELP algorithm applied to the enrollment data for C1. The device generates its own version of
these bit-strings, SHDC and SSBSC, by applying the challenges to its hardware PUF. With all four
bit-strings available, the device then executes the dual-helper-data (DHD) algorithm. DHD first bitwise
ANDs the SHDC and SHDB bit-strings, which is shown by the DSHD bit-string along the bottom of
Figure 4b. Then, two DSBS bit-strings are constructed from the SSBS bit-strings by eliminating SSBS
bits where the corresponding SHD bits change from 1 to 0 in the DSHD bit-string. This happens for
DSHD bits at positions 15 and 17. The SHDC bit at position 15 is a 1, which means the SSBSC includes
a corresponding strong bit, which must be eliminated. The deletion of this bit is indicated with the ‘X’
over the SSBSC bit at position 4. Similarly, the DSHD bit at position 17 indicates the SSBSB at position 5
needs to be eliminated. The final versions of the DSBSC and DSBSB bit-strings are shown on the far
right in Figure 4b. The DSBS bit-strings are then compared, and if they match, authentication succeeds.

The dual-helper-data algorithm significantly reduces the probability of the bit flip error between
the DSBSC and DSBSB bit-strings because errors can only occur now when both the fielded device
and server classify the bit as strong. From Figure 3a, this is only possible when noise that occurs
during regeneration shifts the red PN by more than twicethe width of the weak region (not the same
width, as is true of the single-helper-data scheme). The improvement in reliability provided by the
DHD algorithm allows the device to set a pass-fail threshold as shown, where all bits in the two DSBS
bit-strings must match exactly.



Cryptography 2019, 3, 18 9 of 24

3.6. Session Key Generation Using DHD_Key

In cases where the device and bank need to exchange encrypted data, a novel algorithm, called
DHD_Key, can be used to create a shared secret key. This process is carried out only after both the
device and bank have successfully authenticated. The DHD_Key protocol also leverages the DHD
algorithm, as described for the DHD_Authen process, but with two fundamental differences. First, the
bank sends only the SHDB to the device (i.e., the SSBSB is not transmitted). Second, the device sends
its SHDC to the bank so it too can carry out the DHD algorithm.

A graphic illustration of the process is shown in Figure 5. First, the bank sends challenges to the
device (not shown), and both generate and exchange their SHDB and SHDC bit-strings. Then each
side calculates the bitwise AND of the SHD bit-strings, eliminating bits in their corresponding SSBS
bit-strings to produce the DSBSB and DSBSC bit-strings. As discussed above, the DHD algorithm
significantly increases the probability that the two independently-generated DSBS bit-strings are
identical. In such cases, these bit-strings can be used as a session key by, for example, the AES
encryption algorithm, to encrypt communication between the device and bank.

Cryptography 2019, 4, x FOR PEER REVIEW 9 of 24 

 

algorithm, as described for the DHD_Authen process, but with two fundamental differences. First, 
the bank sends only the SHDB to the device (i.e., the SSBSB is not transmitted). Second, the device 
sends its SHDC to the bank so it too can carry out the DHD algorithm. 

A graphic illustration of the process is shown in Figure 5. First, the bank sends challenges to the 
device (not shown), and both generate and exchange their SHDB and SHDC bit-strings. Then each side 
calculates the bitwise AND of the SHD bit-strings, eliminating bits in their corresponding SSBS bit-
strings to produce the DSBSB and DSBSC bit-strings. As discussed above, the DHD algorithm 
significantly increases the probability that the two independently-generated DSBS bit-strings are 
identical. In such cases, these bit-strings can be used as a session key by, for example, the AES 
encryption algorithm, to encrypt communication between the device and bank. 

 
Figure 5. Session key construction process implemented by the DHD_Key algorithm. 

4. PUF-Based e-Cash Transaction Protocol (PUF-Cash) 

The PUF-Cash protocol consists of four entities: Alice, Bob, a trusted third party (TTP), and the 
bank. The protocol extends HELP protocols described above in multiple, distinct ways. First, a special 
enrollment process generates two timing databases (DBs), one which labels the timing data collected 
from the device with the owner’s name (e.g., Alice and Bob) or Cx as given by the leftmost column of 
Figure 2, and a second anonymous DB that stores timing data sets where the rows from Figure 2 are 
randomly permuted and stored without the identifying labels. Note that enrollment is done at a 
trusted facility by the device manufacturer or an independent third-party contractor after the devices 
are manufactured and not at the bank. The anonymous DB enables transactions with the bank to be 
blinded, which is in the spirit of Chaum’s scheme [4,5]. Here, the original two-party protocol is 
extended to four parties, namely, Alice, Bob, the bank, and a trusted third party (TTP).The message 
exchange protocol contains multiple steps to facilitate a secure, potentially offline, payment 
transaction between Alice and Bob. . XOR encryption is employed, wherever safe to do so, to maintain 
confidentiality while minimizing computational complexity. 

The messages exchanged during the enrollment process for PUF-Cash are shown in Figure 6 
where the terms NATDB and {ck1} are used in reference to the non-anonymous DB, and ATDB and {ck2} 
are used for the anonymous DB. The challenge set {ck} is partitioned into two subsets {ck1} and {ck2}. 
The challenges in {ck1} are chosen randomly from the CRP space defined for HELP. One half of the 
challenge set is common, and applied to all devices, while subsets are randomly chosen for each 
device from the other half. Note that this partitioning of {ck1} is not explicitly depicted in Figure 6. The 
common set of challenges enables privacy between Alice, Bob, and the bank because the device does 
not identify itself in the message exchange during authentication. Instead, the Cobra algorithm 
performed at the bank carries out a search process using enrollment data that is associated with the 
common challenges to authenticate and identify the device as part of the trusted set. Once identified, 
the bank can select device-specific challenges for the bank authentication and session key generation 
processes as needed. The set {ck2} is also chosen randomly but is common for all devices. The bank 
applies a search here as well, which requires all enrolled devices in the ATDB to store PN for these 
common challenges. Both the NATDB and ATDB are transferred from the trusted enrollment facility to 
the bank, and both are protected as sensitive data. 

Figure 5. Session key construction process implemented by the DHD_Key algorithm.

4. PUF-Based e-Cash Transaction Protocol (PUF-Cash)

The PUF-Cash protocol consists of four entities: Alice, Bob, a trusted third party (TTP), and the
bank. The protocol extends HELP protocols described above in multiple, distinct ways. First, a special
enrollment process generates two timing databases (DBs), one which labels the timing data collected
from the device with the owner’s name (e.g., Alice and Bob) or Cx as given by the leftmost column
of Figure 2, and a second anonymous DB that stores timing data sets where the rows from Figure 2
are randomly permuted and stored without the identifying labels. Note that enrollment is done
at a trusted facility by the device manufacturer or an independent third-party contractor after the
devices are manufactured and not at the bank. The anonymous DB enables transactions with the
bank to be blinded, which is in the spirit of Chaum’s scheme [4,5]. Here, the original two-party
protocol is extended to four parties, namely, Alice, Bob, the bank, and a trusted third party (TTP). The
message exchange protocol contains multiple steps to facilitate a secure, potentially offline, payment
transaction between Alice and Bob. XOR encryption is employed, wherever safe to do so, to maintain
confidentiality while minimizing computational complexity.

The messages exchanged during the enrollment process for PUF-Cash are shown in Figure 6
where the terms NATDB and {ck1} are used in reference to the non-anonymous DB, and ATDB and
{ck2} are used for the anonymous DB. The challenge set {ck} is partitioned into two subsets {ck1} and
{ck2}. The challenges in {ck1} are chosen randomly from the CRP space defined for HELP. One half of
the challenge set is common, and applied to all devices, while subsets are randomly chosen for each
device from the other half. Note that this partitioning of {ck1} is not explicitly depicted in Figure 6.
The common set of challenges enables privacy between Alice, Bob, and the bank because the device
does not identify itself in the message exchange during authentication. Instead, the Cobra algorithm
performed at the bank carries out a search process using enrollment data that is associated with the
common challenges to authenticate and identify the device as part of the trusted set. Once identified,
the bank can select device-specific challenges for the bank authentication and session key generation
processes as needed. The set {ck2} is also chosen randomly but is common for all devices. The bank



Cryptography 2019, 3, 18 10 of 24

applies a search here as well, which requires all enrolled devices in the ATDB to store PN for these
common challenges. Both the NATDB and ATDB are transferred from the trusted enrollment facility to
the bank, and both are protected as sensitive data.Cryptography 2019, 4, x FOR PEER REVIEW 10 of 24 

 

 

Figure 6. Physical unclonable function (PUF)-Cash protocol enrollment process. 

Figures 7 and 8 depict the sequence of messages and actions carried out in a single transaction 
by the protocol, with the formal cryptographic notation employed in Figure 7 and the major elements 
of the protocol in Figure 8. The following sequence of steps refer to the corresponding annotations in 
the figures. We use the acronyms MA to refer to mutual authentication and SKG to refer to session 
key generation. Note that all invocations of HELP for key generation on the device, denoted as PUF() 
in Figure 7, and the corresponding calls to GenKey() by the bank take a nonce as a parameter. 
However, the nonce parameter is omitted in most cases to avoid confusion with other nonces used in 
the protocol. 

• Step 0 (Enrollment): The bank and TTP mutually authenticate using the HELP algorithms Cobra 
and DHD_Authen, and then create a 128-bit AES session key SKt using DHD_Key. Here, we 
assume the TTP also contains an instance of HELP and has enrollment data stored in the bank’s 
NAT database. Note that each of the device and server authentication operations within mutual 
authentication, and the session key generation, use distinct sets of challenges. This process is 
performed only once at startup using challenges from the NATDB. 
Alice and Bob also receive preauthorization information from the bank during enrollment, and 
later periodically in the field during withdrawal requests (only Bob’s transaction is annotated in 
Figure 7). Preauthorization information is later used to cryptographically bind Alice’s e-Cash 
tokens to Bob when Alice pays Bob for a product or service. Alice and Bob first carry out mutual 
authentication (MA) and session key generation (SKG) with the bank. The bank generates 
preauthorization tuples ({c2}, n3) uniquely for Alice and Bob, with the challenges {c2} drawn from 
those stored in the anonymous database (ATDB). The bank stores the tuples ({c2}, n3) in listPA along 
with the owner’s information. The bank then encrypts and transmits the ({c2}, n3) tuples to Alice 
and Bob, who then decrypt them using their session keys. Alice and Bob store these 
preauthorization tuples securely on their devices for future transactions. Note that Step 0 only 
occurs once or aperiodically as enrollment is updated. 

• Step 1: An e-Cash transfer begins with Alice interacting with her bank to withdraw funds. Alice 
has a device containing an instance of HELP that has been enrolled with the bank, and is also 
now capable carrying out mutual authentication and session key generation with the bank. The 
challenges {c1} sent by the bank refer to the generation of a shared session key SKa between Alice 
and the bank (as noted, two different sets of challenges not shown are used for the proceeding 
MA operations). Alice generates a session key SKa by applying {c1} to her PUF, while the bank 
generates its copy of SKa by applying Alice’s enrollment data (PNa) stored in the NATDB to a 
software version of the HELP algorithm. Alice then requests a withdrawal of $1 from her 
account. 

• Step 2: In response to Alice’s request, the bank obtains a set of, (e.g., 100 n1) nonces from a 
TRNG, then AES encrypts Alice’s SKa and n1s as Et = ESKt(SKa||n1s) and transmits Et to the TTP. 
Note that SKt is a prenegotiated symmetric key between the bank and TTP from Step 0. The TTP 
decrypts Et as (SKa, n1s) = DSKt(Et) and stores the pair (SKa, n1s) in a list, listn1s. 

• Step 3: Once the bank completes the transaction with the TTP, it AES encrypts the n1s as En1 = 
ESKa(n1s) and then transmits them to Alice. Alice decrypts n1s = DSKa(En1s) using her SKa. The bank 
subtracts $1 from her account and adds the corresponding n1 to a floating e-Cash pool (not 

Figure 6. Physical unclonable function (PUF)-Cash protocol enrollment process.

Figures 7 and 8 depict the sequence of messages and actions carried out in a single transaction by
the protocol, with the formal cryptographic notation employed in Figure 7 and the major elements of
the protocol in Figure 8. The following sequence of steps refer to the corresponding annotations in the
figures. We use the acronyms MA to refer to mutual authentication and SKG to refer to session key
generation. Note that all invocations of HELP for key generation on the device, denoted as PUF() in
Figure 7, and the corresponding calls to GenKey() by the bank take a nonce as a parameter. However,
the nonce parameter is omitted in most cases to avoid confusion with other nonces used in the protocol.

• Step 0 (Enrollment): The bank and TTP mutually authenticate using the HELP algorithms Cobra
and DHD_Authen, and then create a 128-bit AES session key SKt using DHD_Key. Here, we
assume the TTP also contains an instance of HELP and has enrollment data stored in the bank’s
NAT database. Note that each of the device and server authentication operations within mutual
authentication, and the session key generation, use distinct sets of challenges. This process is
performed only once at startup using challenges from the NATDB. Alice and Bob also receive
preauthorization information from the bank during enrollment, and later periodically in the field
during withdrawal requests (only Bob’s transaction is annotated in Figure 7). Preauthorization
information is later used to cryptographically bind Alice’s e-Cash tokens to Bob when Alice
pays Bob for a product or service. Alice and Bob first carry out mutual authentication (MA) and
session key generation (SKG) with the bank. The bank generates preauthorization tuples ({c2}, n3)
uniquely for Alice and Bob, with the challenges {c2} drawn from those stored in the anonymous
database (ATDB). The bank stores the tuples ({c2}, n3) in listPA along with the owner’s information.
The bank then encrypts and transmits the ({c2}, n3) tuples to Alice and Bob, who then decrypt
them using their session keys. Alice and Bob store these preauthorization tuples securely on their
devices for future transactions. Note that Step 0 only occurs once or aperiodically as enrollment
is updated.

• Step 1: An e-Cash transfer begins with Alice interacting with her bank to withdraw funds.
Alice has a device containing an instance of HELP that has been enrolled with the bank, and is
also now capable carrying out mutual authentication and session key generation with the bank.
The challenges {c1} sent by the bank refer to the generation of a shared session key SKa between
Alice and the bank (as noted, two different sets of challenges not shown are used for the proceeding
MA operations). Alice generates a session key SKa by applying {c1} to her PUF, while the bank
generates its copy of SKa by applying Alice’s enrollment data (PNa) stored in the NATDB to a
software version of the HELP algorithm. Alice then requests a withdrawal of $1 from her account.

• Step 2: In response to Alice’s request, the bank obtains a set of, (e.g., 100 n1) nonces from a TRNG,
then AES encrypts Alice’s SKa and n1s as Et = ESKt(SKa||n1s) and transmits Et to the TTP. Note that
SKt is a prenegotiated symmetric key between the bank and TTP from Step 0. The TTP decrypts
Et as (SKa, n1s) = DSKt(Et) and stores the pair (SKa, n1s) in a list, listn1s.



Cryptography 2019, 3, 18 11 of 24

• Step 3: Once the bank completes the transaction with the TTP, it AES encrypts the n1s as
En1 = ESKa(n1s) and then transmits them to Alice. Alice decrypts n1s = DSKa(En1s) using her SKa.
The bank subtracts $1 from her account and adds the corresponding n1 to a floating e-Cash pool
(not shown). The n1 nonces will later enable the TTP to validate that Alice has transacted with
the bank.

• Step 4: When Alice wants to blind her token for payment, she XOR encrypts her SKa and n1s
as eSKa_n1s and transmits them to the TTP. The TTP XOR decrypts eSKa_n1s using each of the n1sx

elements in listn1s and compares the recovered SK’a with each of the corresponding SKax session
keys from the pairs (SKax, n1sx) pairs stored in listn1s. The TTP removes the matching (SKax, n1sx)
from listn1s. Note that finding a match also authenticates Alice to the TTP and validates her as
having transacted earlier with the bank.

• Step 5: The TTP generates a set of corresponding n2s using a TRNG, AES encrypts the n2s with
SKt as En2s = ESKt(n2s), and transmits them to the bank. The bank decrypts the n2s and stores
them in a list of open transactions, identified as listn2s. The TTP also AES encrypts both the n1s
and n2s with SKa and transmits the En12s to Alice. Alice recovers the n1s and n2s using her copy
of SKa as (n1s, n2s) = DSKa(En12s). Alice validates the n1s recovered are the same as the originals
she holds. Once this step is complete, Alice’s e-Cash tokens are blinded and ready for payment.

• Step 6: Alice wants to pay Bob $1. First, Alice establishes a secure channel with Bob using elliptic
curve Diffie–Hellman ephemeral with RSA (ECDHE-RSA). This protocol is part of the TLS 1.2
standard, and an official implementation exists in OpenSSL since v1.0.1. Once a secure channel
is established, Bob then generates a nonce xi and XORs it with his preauthorization n3 nonce to
produce n3i. Bob supplies Alice with the ({c2}, n3i) preauthorization tuple. Alice applies the {c2}
challenges to her PUF using n3i to select a specific set of HELP parameters. The HELP parameters
further expand the CRP space beyond the {c2} challenges, and for the PUF-Cash protocol, they
also cryptographically bind her response R’ to the ({c2}, n3i) tuple. She then XOR encrypts R’ with
the n2s as eR’n2s = (R’ XOR n2s) and transmits eR’n2s and the single helper data (SHDC) bit-string to
Bob as an e-Cash payment.

• Step 7: Bob authenticates and generates a session key with the bank. He AES encrypts his n3 and
xi with his key SKb as Enxi. He then transmits the SHDC bit-string, Enxi and the eR’n2s to the bank.
The bank decrypts Enxi to recover the n3 and xi and validates that n3 was allocated to Bob during
an earlier preauthorization operation. The challenges {c2} associated with n3 in listPA are retrieved.
The bank creates the nonce used by Alice, n3i, by XORing the n3 and xi.

• Step 8: The bank carries out a search process to validate each of Bob’s eR’n2s. First, the bank
identifies the anonymous source (Alice) of the e-Cash tokens by executing a software version of the
HELP algorithm, referred to as single-helper-data bit-string generation (SBG). This process was
described earlier in Section 3.3. The challenges ({c2}, n3i) are used as input to the HELP algorithm
along with each set of PNi stored for anonymous customer i in the ATDB database. The output of
this operation is designated as {Ri, SHDBi} in Figure 7, where Ri is the response bit-string and
SHDBi is the corresponding single-helper-data bit-string.

Cobra is then used to correlate Alice’s SHDC to each of the SHDBi in an attempt to find a match
(see Section 3.4). If successful, the matching pair {Ry, SHDBy} is used in the following to identify the set
of n2x stored in the bank’s listn2s that corresponds to the set of eR’n2s provided by Bob.

For each eR’n2, the n2x in listn2s are parsed to recover a R’x = (n2x XOR eR’n2). A second HELP
algorithm called dual-helper-data authentication (DHDA) is used to determine if the R’x matches,
bit-by-bit, to the Ry in the matching tuple (Ry, SHDBy). The DHDA uses both the SHDC and the SHDBy

helper data bit-strings and returns ‘match’ if successful. This process is identical to the DHD_Authen
algorithm described earlier in Section 3.5.

An exact match validates the n2x as being associated with a withdrawal carried out earlier by
Alice. In such cases, the bank transfers 1 cent to Bob’s account and removes the n2x from listn2s to



Cryptography 2019, 3, 18 12 of 24

prevent double spending. An arbitrary n1 is also removed from the e-Cash floating pool to allow the
bank to maintain accountability between withdrawals and deposits. Note that although each eR’n2 is
authenticated as described, only the first eR’n2 is targeted in the search because the remaining eR’n2 are
stored consecutively in listn2s. Therefore, the run time is linear and proportional to the size of listn2s.Cryptography 2019, 4, x FOR PEER REVIEW 12 of 24 

 

 

Figure 7. The PUF-Cash transaction protocol. Figure 7. The PUF-Cash transaction protocol.



Cryptography 2019, 3, 18 13 of 24Cryptography 2019, 4, x FOR PEER REVIEW 13 of 24 

 

 

Figure 8. Major steps of the PUF-Cash Transaction Protocol. 

Cobra is then used to correlate Alice’s SHDC to each of the SHDBi in an attempt to find a match 
(see Section 3.4). If successful, the matching pair {Ry, SHDBy} is used in the following to identify the 
set of n2x stored in the bank’s listn2s that corresponds to the set of eR’n2s provided by Bob. 

For each eR’n2, the n2x in listn2s are parsed to recover a R’x = (n2x XOR eR’n2). A second HELP 
algorithm called dual-helper-data authentication (DHDA) is used to determine if the R’x matches, bit-
by-bit, to the Ry in the matching tuple (Ry, SHDBy). The DHDA uses both the SHDC and the SHDBy 
helper data bit-strings and returns ‘match’ if successful. This process is identical to the DHD_Authen 
algorithm described earlier in Section 3.5. 

An exact match validates the n2x as being associated with a withdrawal carried out earlier by 
Alice. In such cases, the bank transfers 1 cent to Bob’s account and removes the n2x from listn2s to 
prevent double spending. An arbitrary n1 is also removed from the e-Cash floating pool to allow the 
bank to maintain accountability between withdrawals and deposits. Note that although each eR’n2 is 
authenticated as described, only the first eR’n2 is targeted in the search because the remaining eR’n2 are 
stored consecutively in listn2s. Therefore, the run time is linear and proportional to the size of listn2s. 

5. Attack Surface Analysis 

5.1. Overview 

An e-Cash protocol must guard against counterfeiting and double-spending. Counterfeiting 
specifically refers to the creation of a value or a token outside the purview of the issuing authority. 
Meanwhile, double-spending refers to the ability to exchange a value or spend a unique token more 
than once. The latter is a harder property to guard against in digital systems. Counterfeiting and 
double-spending are inextricably linked in value-based systems, but they may be treated distinctly 
in token-based systems. This section will explore various attacks possible on PUF-Cash within the 
context of either counterfeiting or double-spending PUF-Cash tokens. 

Execution Environment 

The execution environment, or hardware platform, for PUF-Cash is envisaged as a single-
purpose device. This device is expected to consist of a cryptographic engine built around HELP either 
implemented in an Application Specific Integrated Circuit (ASIC) or on an FPGA, a nonvolatile 
memory for storing challenges and encrypted e-Cash tokens, and a microcontroller to transition 
through the protocol states, operate peripherals (display and/or biometrics), and manage 
communications channels. Embedding HELP inside a general computer device requires additional 

Figure 8. Major steps of the PUF-Cash Transaction Protocol.

5. Attack Surface Analysis

5.1. Overview

An e-Cash protocol must guard against counterfeiting and double-spending. Counterfeiting
specifically refers to the creation of a value or a token outside the purview of the issuing authority.
Meanwhile, double-spending refers to the ability to exchange a value or spend a unique token more
than once. The latter is a harder property to guard against in digital systems. Counterfeiting and
double-spending are inextricably linked in value-based systems, but they may be treated distinctly
in token-based systems. This section will explore various attacks possible on PUF-Cash within the
context of either counterfeiting or double-spending PUF-Cash tokens.

Execution Environment

The execution environment, or hardware platform, for PUF-Cash is envisaged as a single-purpose
device. This device is expected to consist of a cryptographic engine built around HELP either
implemented in an Application Specific Integrated Circuit (ASIC) or on an FPGA, a nonvolatile memory
for storing challenges and encrypted e-Cash tokens, and a microcontroller to transition through the
protocol states, operate peripherals (display and/or biometrics), and manage communications channels.
Embedding HELP inside a general computer device requires additional consideration, as the attack
surface is much larger (for instance through software side-channel attacks), and is therefore relegated
to future work.

5.2. Operational Example

The proposed protocol consists of four entities (Alice, Bob, the bank, and TTP) and the
following directed channels of communication (Alice->bank, bank->TTP, Alice->TTP, Alice-> Bob, and
Bob->bank). A sample transaction sequence, annotated with numbers in Figure 8, proceeds as follows:

1. Startup and enrollment: The bank and the TTP authenticate and establish a session key SKt. The
e-Cash devices given to Alice and Bob are initialized with preauthorization information.

2. Alice makes a withdrawal request from the bank.
3. The bank transmits an encrypted copy of Alice’s e-Cash tokens (n1s) and her session key Ska to

the TTP, which stores them in listn1s.
4. The bank transmits an encrypted copy of Alice’s e-Cash tokens (n1s) to Alice and deducts the

requested amount from her account.
5. Alice then communicates with the TTP to blind her n1s.



Cryptography 2019, 3, 18 14 of 24

6. The TTP looks up the n1s received from Alice in listn1s and exchanges each successful n1 lookup
with a randomly generated nonce, n2, constituting a blinded e-Cash token. The TTP transmits
encrypted versions of the n2s to both Alice and the bank. The bank stores each n2 in listn2s.

7. Once the e-Cash tokens are blinded, Alice can pay Bob without requiring communications to
the bank or the TTP. To initiate the transfer, Bob and Alice establish a secure channel using
the Elliptic Curve Diffie–Hellman component of the TLS 1.2 standard. Bob then transmits his
preauthorization information to Alice who applies it to her PUF. Alice binds her PUF response R’
to the blinded n2s (signs them) and transmits them back to Bob.

8. Once Bob receives the signed n2s, he may deposit them into his account. Bob transmits the signed
n2s and his preauthorization information to the bank. The bank validates Bob’s preauthorization
information by looking up his n3 in listPA and retrieves {c2}.

9. The bank then validates each of Bob’s n2s by searching for them in listn2s. Bob’s account balance
is updated with the deposit amount.

PUF-Cash was originally designed to enable de-networked transactions (i.e., the timing of the
communications channels is variable). Although multiple variations are possible, two primary timelines
are the most practical and therefore worthy of assessment, as depicted in Figure 9.

Cryptography 2019, 4, x FOR PEER REVIEW 14 of 24 

 

consideration, as the attack surface is much larger (for instance through software side-channel 
attacks), and is therefore relegated to future work. 

5.2. Operational Example 

The proposed protocol consists of four entities (Alice, Bob, the bank, and TTP) and the following 
directed channels of communication (Alice->bank, bank->TTP, Alice->TTP, Alice-> Bob, and Bob-
>bank). A sample transaction sequence, annotated with numbers in Figure 8, proceeds as follows: 

1. Startup and enrollment: The bank and the TTP authenticate and establish a session key SKt. The 
e-Cash devices given to Alice and Bob are initialized with preauthorization information. 

2. Alice makes a withdrawal request from the bank. 
3. The bank transmits an encrypted copy of Alice’s e-Cash tokens (n1s) and her session key Ska to 

the TTP, which stores them in listn1s. 
4. The bank transmits an encrypted copy of Alice’s e-Cash tokens (n1s) to Alice and deducts the 

requested amount from her account. 
5. Alice then communicates with the TTP to blind her n1s. 
6. The TTP looks up the n1s received from Alice in listn1s and exchanges each successful n1 lookup 

with a randomly generated nonce, n2, constituting a blinded e-Cash token. The TTP transmits 
encrypted versions of the n2s to both Alice and the bank. The bank stores each n2 in listn2s. 

7. Once the e-Cash tokens are blinded, Alice can pay Bob without requiring communications to the 
bank or the TTP. To initiate the transfer, Bob and Alice establish a secure channel using the 
Elliptic Curve Diffie–Hellman component of the TLS 1.2 standard. Bob then transmits his 
preauthorization information to Alice who applies it to her PUF. Alice binds her PUF response 
R’ to the blinded n2s (signs them) and transmits them back to Bob. 

8. Once Bob receives the signed n2s, he may deposit them into his account. Bob transmits the signed 
n2s and his preauthorization information to the bank. The bank validates Bob’s preauthorization 
information by looking up his n3 in listPA and retrieves {c2}. 

9. The bank then validates each of Bob’s n2s by searching for them in listn2s. Bob’s account balance 
is updated with the deposit amount. 

PUF-Cash was originally designed to enable de-networked transactions (i.e., the timing of the 
communications channels is variable). Although multiple variations are possible, two primary 
timelines are the most practical and therefore worthy of assessment, as depicted in Figure 9. 

 
Figure 9. Sequence of transactions along a timeline. (1) Offline scenario with Alice holding blinded 
tokens for an extended period of time before transferring to Bob, and (2) online scenario where Alice 
blinds tokens right before transferring to Bob. 

Timeline 1 depicts the offline scenario use case of PUF-Cash, where Alice and Bob may have 
local connectivity, but remote connectivity to the bank and TTP are absent. In this scenario, Alice will 
acquire tokens from the bank (1–3) and blind them with the TTP (4–5) in a very short time-frame 
(within seconds, limited by network latency), while connectivity exists. Then, Alice may store the 
blinded tokens on her device for days, much like cash, before transferring to Bob (6). This transfer 
will rely on local channels, and no connectivity to the bank or TTP is needed to complete the 

Figure 9. Sequence of transactions along a timeline. (1) Offline scenario with Alice holding blinded
tokens for an extended period of time before transferring to Bob, and (2) online scenario where Alice
blinds tokens right before transferring to Bob.

Timeline 1 depicts the offline scenario use case of PUF-Cash, where Alice and Bob may have
local connectivity, but remote connectivity to the bank and TTP are absent. In this scenario, Alice will
acquire tokens from the bank (1–3) and blind them with the TTP (4–5) in a very short time-frame
(within seconds, limited by network latency), while connectivity exists. Then, Alice may store the
blinded tokens on her device for days, much like cash, before transferring to Bob (6). This transfer will
rely on local channels, and no connectivity to the bank or TTP is needed to complete the exchange.
Bob may then store the transferred tokens for an additional period of time on-device before depositing
them into the bank (7–8).

Meanwhile, Timeline 2 captures the merchant and online payment scenarios of PUF-Cash. Here,
Bob represents a merchant terminal or an online store with persistent connectivity to the bank and
TTP. Initially, Alice withdraws tokens from the bank, but stores them unblinded on-device. Unblinded
tokens are directly bound to Alice and cannot be spent by other devices. Once Alice is ready to pay, the
tokens are blinded (4–5), sent to Bob (6), and deposited by Bob (7–8) in rapid fashion (within seconds,
limited by network latency).

It can be observed that blinded tokens are easiest to steal between Steps 4–5 and 6. Given the
large delay (on the order of days) between these two steps in Timeline 1, the risk of theft is higher in
Timeline 1. Therefore, the security profile of Timeline 1 is a super-set of Timeline 2.



Cryptography 2019, 3, 18 15 of 24

5.3. Protocol Guarantees

5.3.1. XOR Exchange Security

The proposed protocol is a variant of an XOR exchange protocol, where each transaction in the
sequence relies on XOR encryption. The choice for an XOR-based protocol was driven by the need to
target low-computation and low-power devices, where the cryptographic payload is minimized. In an
XOR protocol, the symmetric cryptosystem is assumed to be unbreakable if the keys are unique for
every fresh instance of the protocol (aka a one-time pad). In PUF-Cash, the group of possible XOR
keys is defined over the set of challenge–response pairs generated during enrollment that are unique
to each device.

An XOR exchange, if improperly conducted, can leak secrets about the protocol. Here we perform
an analysis to investigate the information leaked to a perpetrator who knows the protocol and has
managed to infiltrate the secure channel. In this scenario, the perpetrator observes the following
information assuming a single token transfer:

Bank→ Alice : ESKa(n1)

Alice− > TTP : SKa⊕ n1

TTP− > Alice : ESKa(n1 ‖ n2)

Bob− > Alice : {c2}, (xi ⊕ n3)

Alice− > Bob : R′ ⊕ n2

Messages prefixed with an E() are AES-128 encrypted and not subject to XOR analysis.
The remaining messages can be assembled as follows:

SKa ⊕ n1 ⊕ ({c2}
∣∣∣∣∣∣(xi ⊕ n3)) ⊕R′ ⊕ n2

It can be observed that the sequence is irreducible without breaking AES-128. Therefore, the only
quantity a perpetrator observes are the {c2} challenges issued by Bob to Alice. It is noted that none of
the secrets (nonces or tokens) are uncovered by the perpetrator, and since observing the challenges
confers no benefit, the protocol is proven not to leak any secrets.

5.3.2. Uniqueness

HELP is a variant of a strong PUF, and as such relies on the generation of challenge–response
pairs as a fundamental building block for random number generation. Therefore, the randomness of
CRPs is crucial to the security of the XOR-exchange transaction sequence. In HELP, a component of
the challenges, referred to as the path-select-masks, can be configured by the server to select different
sets of k PN from the set of M possible PNs [25], where PN refers to 16-bit average path delays for each
path chosen by the path-select-masks.

The total number of unique bits that each device can generate is related to the number of PN stored
in the database for each device. The experimental results presented in this work utilize a database
containing 3320 PNR and 3320 PNF values per device (this number can be increased into the millions if
needed). The HELP processing algorithm selects 2048 PNR and 2048 PNF randomly from each of these
sets to create 2048 PN differences (PND). The number of possible differences is 33202 ~= 11 million or
223.4, where each PND is associated with a unique bit.

Subsequent postprocessing steps for temperature–voltage compensation and modulus operations
increase the search space by factor of approximately 217 unique bits. Therefore, using a relatively small
set of 6640 PN in the database, the total number of unique bits per device is ~240. Therefore, each device
can generate more than 1/2 billion (229) unique bit-strings and keys, where each authentication and
session key generation operation requires 2048 (211) bits. In addition to the authentication and session



Cryptography 2019, 3, 18 16 of 24

key generation portions, HELP is also utilized as a true random number generator (TRNG) for all
nonces (n1, n2, and n3) used in the system.

5.3.3. Anonymity

The message exchange between Alice and the TTP is loosely equivalent to Chaum’s blind
signature [4,5]. In Chaum, the bank signs Alice’s message and blinding factor with its private key.
Then, Alice removes the blinding factor from the signed message via RSA’s homomorphic message.
In contrast, the TTP implements the blinding factor in PUF-Cash when it exchanges n1s for n2s with
the bank. Since the n2s are anonymously granted against the anonymous challenge set, the bank has
no way of knowing who the original n2s were issued to upon deposit.

5.3.4. Counterfeiting

Making change is a necessary but unpleasant aspect of cash transactions. In digital currency,
making change can be efficient if the tokens are mutable or divisible. If exploited, the mechanism
that enables divisibility also enables rapid counterfeiting, as each individual device now becomes
capable of generating new tokens from old tokens. In PUF-Cash, the choice was made to issue
immutable/indivisible tokens secured by the responses (R’) from CRP interaction between the bank
and Alice. Once XOR encrypted, these tokens are immutable, and since they include the nonce stored
on the bank and TTP ledgers, unforgeable. Counterfeiting is therefore impossible.

To facilitate making change, all tokens are unitary, valued at 1 cent, and therefore each transaction
can be completed by imparting a precise, finite number of whole tokens. Unitary tokens are less
efficient than divisible tokens in terms of the bandwidth required per transaction. In the present
protocol, each blinded token is comprised of 128 bits precisely. An example transaction of $100 requires
10,000 tokens, resulting in a reasonable 160 KB of information transfer.

5.3.5. Double-Spending

In the original version of the protocol, Alice’s blinded tokens were transitive, in that once the
blinded tokens were in Bob’s possession, they could be re-spent (i.e., transferred to Charlie without
requiring contact to the bank or the TTP). The following problems emerged in this model: (1) Alice
does not have any guarantees that Bob belongs to a trusted network, (2) Alice had no evidence of a
transaction with Bob, and (3) it was possible for a malicious Bob to send the same blinded token to
Charlie and Dave, potentially implicating Alice as the thief. Double-spending was still not possible,
however, as the bank would reject the same token arriving from two different sources.

To mitigate these and other risks, preauthorization information was introduced to enable Alice
to sign her e-Cash tokens (n2s) using challenge information from Bob’s preauthorization tuple ({c2},
n3i). The bank also records Bob’s preauthorization tuple establishing a verifiable transaction sequence
between Alice and Bob and then between Bob and the bank. During a transfer, Alice binds Bob’s
unique nonce (xi XOR n3) using Alice’s PUF-generated R’ to each blinded token. This confers an
authentication benefit to Bob and the bank because the n2s are XOR encrypted during transfers and,
therefore, are never exposed to adversaries or even to Bob.

Alice can lose (R’ XOR n2), similar to physical banknotes. It is possible to mitigate risk of loss if
anonymity is compromised as per the following scheme: The bank can time-stamp each n2 received
from the TTP. The n2s that exceed a pre-established time duration without redemption are potential
instances of funds lost by Alice. If Alice informs the bank and provides transaction logs from her own
device, then the bank can coordinate with the TTP to recover funds.

5.3.6. Network Attack Vectors

Network attacks exploit the communications channel and the information exchange between
actors participating in the protocol. Recalling the four possible actors (Alice, Bob, bank, and TTP), the
following attack vectors are possible and aimed for discussion.



Cryptography 2019, 3, 18 17 of 24

1. Man-in-the-middle (MITM) MITM is a communications channel attack, where Mallory may
masquerade as Bob to Alice and Alice to Bob. Such an attack is always possible during Step 3 in
both timelines, where Alice exchanges her value with Bob. The primary guard against this attack
is mutual authentication via signed public–private key pairs. This attack is thwarted by defense
in depth built into the PUF-cash protocol. To successfully attack the protocol, Mallory must:

a. Substitute Alice and Bob’s certificates with equivalent versions signed by the bank (thwart
mutual authentication).

b. Issue and supply currency tokens that look equivalent to Alice’s tokens.
c. Issue and supply preauthorization information that looks equivalent to Bob’s.
d. Issue a challenge–response pair from the set of common challenges stored at the bank

or TTP.

Since all four breaches must be coincident for the attack to succeed, PUF-Cash demonstrates
defense in depth and is highly resistant to an MITM attack.

2. Replay Attack Each step of the transaction is protected by a fresh nonce or a new secret key
generation step. In the transaction between Alice and the bank, a unique secret key and fresh
nonces (n1s) are chosen. In the transaction between Alice and the TTP, the secret key is unique
to the session, generated from the challenge–response pairs uniquely chosen for that transfer,
and encrypted via AES-128. Similarly, the nonces supplied by the TTP as part of the blinded
tokens (n2s) are also unique. In addition, the preauthorized information generated by the bank
for Bob also embed a unique nonce (xi XOR n3) per transaction, which is then cryptographically
bound to the blinded tokens by Alice before transferring to Bob. As described in the previous
section, the uniqueness of the key is guaranteed. The bank and the TTP utilize PUF-based true
random number generators (TRNGs) for nonce generation, eliminating the risk of a replay attack
due to poor random number generation. Finally, even when using the same parameters and
challenges, any given R′ will change from one regeneration to the next because of environmental
noise. Therefore, the probability that an identical R′ would be generated by Alice over the lifetime
of Alice’s PUF is very low, completely mitigating the risk of replay attacks.

3. Denial of Service Attack In the PUF-Cash protocol, CRP authentication relies on two databases,
both of which are stored at the bank. Since the databases are centralized and will offer a
public-facing endpoint, it becomes possible for an adversary to perform a (distributed) denial of
service attack (DDoS) against these entries. Transactions between Alice and Bob are localized and,
therefore, decentralized. Since no third-party is involved in the exchange, and if a low-power
direct communications channel is employed for interactions between Alice and Bob, then DDoS
attacks are extremely improbable.

4. Sybil (Impersonation) Attack: Although an instance of HELP is impervious to impersonation
attacks, as a natural property of strong PUFs in general, an impersonation attack is possible if
the PN stored in the bank databases (NATDB and ATDB) are leaked. These PN, coupled with
a software implementation of the HELP algorithms, and stolen credentials from a field device,
could enable a non-PUF, counterfeit device to impersonate Bob in the Alice <-> Bob exchange,
potentially resulting in loss of funds for Alice. For this attack to succeed, the attacker must (a)
breach the bank’s security to access both databases, (2) find a way to match entries in NATDB to
entries in the anonymous ATDB for a single device, and (3) strip the secure channel credentials
from the matching physical field device. Note that the attack can be thwarted by re-registering
the impersonated device against a different set of challenges, as the hardware PUF is capable of
generating much larger numbers of PN than those recorded at the bank databases.

5.3.7. Platform Attack Vectors

1. Model-Building Attacks



Cryptography 2019, 3, 18 18 of 24

HELP is a variant of a strong PUF and, as such, is therefore theoretically susceptible to
model-building attacks [16], which can be extraordinarily effective if employed via machine learning
techniques [26]. Despite improvements, XOR Arbiter PUFs [27] remain particularly vulnerable to
machine learning attacks [28]. HELP is resilient against machine learning attacks because the source
of entropy is a complex combinational logic block implemented without identically designed layout
structures. All successful modeling attacks to date leverage identically designed features within the
elements that define the PUF architecture, which do not exist in HELP. Moreover, the delays of signals
propagating along path segments creates uncertainty regarding which path dominates the timing
and subsequent determination of the PN. In other words, the path that is actually tested under a
given two-vector sequence (challenge vector) may vary from one copy of the chip to another. Last,
determining the two-vector sequences that test all of the paths in the PUF is nontrivial, requiring
automatic test pattern generation and, depending on the combinational logic block, may take months
of computing effort. These factors combine to make it difficult to create a machine learning model and
then evaluate that model at runtime [24].

2. Software Side-Channel Attacks

The PUF-Cash device is currently intended for a single-purpose device. A trusted hardware,
firmware, and operating system are assumed for the protocol’s execution environment if deployed
as a production system; therefore, software side-channel attacks are highly improbable. Careful
consideration will need to be taken when PUF-Cash is embedded within a handheld general
compute device, such as a smartphone. In a preemptive multitasking computing platform, additional
side-channels within the operating system, firmware, and CPU stacks become available for exploitation
and must be mitigated. Under those circumstances, cryptographic computations for the protocol may
be conducted within a trusted execution environment such as TrustZone. Further research is required
in this area.

3. Power-Channel Attacks

Although HELP itself is not susceptible to power analysis attacks because it does not repeatedly
use data as required by such attacks, encryption engines such as AES, which use the PUF-generated
key, are susceptible. Side-channel attack countermeasures can be employed as needed to increase the
resistance against such attacks [29].

6. Experimental Results

A prototype implementation of PUF-Cash was built and tested to evaluate performance, measure
overhead, and observe the statistical quality of the authentication bit-strings and session keys.
The system implementation is shown in Figure 10. Note that the implementation did not rely on
specialized hardware or software configurations to maximize end-to-end performance, rather, choices
for the hardware and software platforms were made from commercial off-the-shelf components to
observe the representative performance in typical environments. The black solid arrows indicate
network-based communication, while the blue dotted arrows signify database access by the bank’s
server. The components of the prototype are given as follows:

• Bank: A Dell PowerEdge T440 Server with thirty-two cores at 1.8 GHz each and 128 GB of
main memory.

• Databases: Two lightweight sqlite3 databases, configured with enrollment data (data sets) for 95
FPGAs, each containing 6640 PN per FPGA. These databases are expanded in separate experiments
to include increments of 1000 randomly generated data sets up to 5095. The databases also store the
two-vector sequences and path-select-masks (challenges) in a form that allows random subsets of
4096 PN to be drawn out for each of HELP-related operations, including the mutual authentication
(MA), session key generation (SKG), and R’ (Rp) response generation operations. Each fielded
device adds approximately 400 KB of enrollment data to each of the databases. The sizes of the



Cryptography 2019, 3, 18 19 of 24

databases with 95 data sets are approximately 32 MB, while those with 5095 data sets are just over
2 GB.

• TTP, Merchant, Alice, Bob, and Charles: Digilent Zybo boards with Xilinx Zynq 7010 SoC FPGAs
represent the fielded chips. Each contains an instance of HELP, and each has enrollment data
stored in the databases.

Cryptography 2019, 4, x FOR PEER REVIEW 19 of 24 

 

• Bank: A Dell PowerEdge T440 Server with thirty-two cores at 1.8 GHz each and 128 GB of main 
memory. 

• Databases: Two lightweight sqlite3 databases, configured with enrollment data (data sets) for 
95 FPGAs, each containing 6640 PN per FPGA. These databases are expanded in separate 
experiments to include increments of 1000 randomly generated data sets up to 5095. The 
databases also store the two-vector sequences and path-select-masks (challenges) in a form that 
allows random subsets of 4096 PN to be drawn out for each of HELP-related operations, 
including the mutual authentication (MA), session key generation (SKG), and R’ (Rp) response 
generation operations. Each fielded device adds approximately 400 KB of enrollment data to 
each of the databases. The sizes of the databases with 95 data sets are approximately 32 MB, 
while those with 5095 data sets are just over 2 GB. 

• TTP, Merchant, Alice, Bob, and Charles: Digilent Zybo boards with Xilinx Zynq 7010 SoC 
FPGAs represent the fielded chips. Each contains an instance of HELP, and each has enrollment 
data stored in the databases. 

 
Figure 10. Experiment Setup. TTP, trusted third party. 

All six computing components (i.e., server + 5 Zybo boards) are internet connected using a 100 
MB local area network. Alice, Bob, and Charles are configured to withdraw tokens from the bank and 
then engage to pay their e-Cash to the merchant. The merchant accepts the e-Cash tokens in exchange 
for some product or service. Alice, Bob, and Charles repeat this operation indefinitely, following the 
steps of the protocol shown in Figure 7. 

The protocol was run multiple times using six instances of the databases, configured with 95 
through 5095 fielded devices in steps of 1000. These six experiments were repeated three times using 
e-Cash tokens of size 1, 5000, and per transaction. Given a 1 cent denomination, these experiments 
represent transfers of 1 cent, $50, and $100, respectively. Note that each nonce representing the tokens 
(n1, n2 and n3) are 128 bits in size. 

The C program implementing the interface at the bank was configured to record transaction 
times for the withdrawal, preauthorization, and deposit transactions. Figure 11 reports the average 
transaction times of all three of these operations measured by running the algorithm on a single 
processor (of the 32). The times are plotted as a function of the database size (x-axis) and number of 
e-Cash tokens (y-axis) and include network communication delays. TTP transaction times associated 
with the (n1, n2) exchange with Alice and the bank are less than 500 ms in all experiments. Moreover, 
the transaction time associated with the TTP-bank authentication and session key generation occurs 
only once at the beginning of the protocol run and takes approximately 3 s to complete. 

Figure 10. Experiment Setup. TTP, trusted third party.

All six computing components (i.e., server + 5 Zybo boards) are internet connected using a 100 MB
local area network. Alice, Bob, and Charles are configured to withdraw tokens from the bank and then
engage to pay their e-Cash to the merchant. The merchant accepts the e-Cash tokens in exchange for
some product or service. Alice, Bob, and Charles repeat this operation indefinitely, following the steps
of the protocol shown in Figure 7.

The protocol was run multiple times using six instances of the databases, configured with 95
through 5095 fielded devices in steps of 1000. These six experiments were repeated three times using
e-Cash tokens of size 1, 5000, and per transaction. Given a 1 cent denomination, these experiments
represent transfers of 1 cent, $50, and $100, respectively. Note that each nonce representing the tokens
(n1, n2 and n3) are 128 bits in size.

The C program implementing the interface at the bank was configured to record transaction
times for the withdrawal, preauthorization, and deposit transactions. Figure 11 reports the average
transaction times of all three of these operations measured by running the algorithm on a single
processor (of the 32). The times are plotted as a function of the database size (x-axis) and number of
e-Cash tokens (y-axis) and include network communication delays. TTP transaction times associated
with the (n1, n2) exchange with Alice and the bank are less than 500 ms in all experiments. Moreover,
the transaction time associated with the TTP-bank authentication and session key generation occurs
only once at the beginning of the protocol run and takes approximately 3 s to complete.

This graph clearly shows that the protocol transaction times scale linearly with the number
of fielded devices and tokens, with an upper bound of less than 10 s per transaction. Given the
independence of the operations, we expect that a multithreaded implementation would produce
transaction times as shown here but for much larger databases (e.g., those configured with enrollment
data for hundreds of thousands of fielded devices).

Each authentication, session key generation, and Rp response generation operation carried out
by the HELP hardware implementation takes approximately one second. These components of the



Cryptography 2019, 3, 18 20 of 24

transaction times are included in the times reported in Figure 11. No failures in authentication or
session key regeneration were observed over the runs of the protocol carried out in these experiments.
Cryptography 2019, 4, x FOR PEER REVIEW 20 of 24 

 

 
Figure 11. Average transaction times as measured by the bank. 

This graph clearly shows that the protocol transaction times scale linearly with the number of 
fielded devices and tokens, with an upper bound of less than 10 s per transaction. Given the 
independence of the operations, we expect that a multithreaded implementation would produce 
transaction times as shown here but for much larger databases (e.g., those configured with enrollment 
data for hundreds of thousands of fielded devices). 

Each authentication, session key generation, and Rp response generation operation carried out 
by the HELP hardware implementation takes approximately one second. These components of the 
transaction times are included in the times reported in Figure 11. No failures in authentication or 
session key regeneration were observed over the runs of the protocol carried out in these experiments. 

The PUF-Cash deposit transaction time is proportional to (n + m), with n representing the 
number of customers enrolled in the ATDB and m representing the number of deposited tokens. The 
time to construct the SHDBi for each customer is approximately 2 ms, and the match time per token 
is approximately 60 μs. This enables each processor to compute SHDBi at a rate of more than 500 per 
second and to carry out token matching operations at a rate of more than 16,000 per second. These 
rates were validated using a special run of the protocol in which the number of n2s in listn2s was 
allowed to grow to sizes with more than 2 million tokens. 

A separate run of the protocol was carried out for 63 h using 5000 tokens per transaction and the 
database configured with 95 customers. The authentication bit-strings (ABs) from DHD_Authen 
(Figure 4b) and session keys (SKs) from DHD_Key (Figure 5) generated by the 5 Zybo boards were 
stored and analyzed using a set of statistical tests. Each of Alice, Bob, and Charles carried out 6422 
fielded chip MA and SKG operations with the bank at a little over 100/h. The merchant mutually 
authenticated 38,534 times, once each for a preauthorization and a deposit transaction, over the 63 h 
test period at approximately 610/h, which is approximately once every 6 s. Note that these rates are 
measured using only one processor of the 32 available on the server; therefore, significant speedups 
can be achieved by introducing parallelism. 

An open source version of 128-bit AES software was used to encrypt data as specified in the 
protocol. All authentication bit-strings (ABs) and session keys (SKs) generated on the Zybo boards 
were produced on-the-fly by a Zynq programmable logic implementation of HELP. The resource 
utilization of HELP is 6500 Look-up Tables (LUTs), 1900 FF, 1 Mixed Mode Clock Manager (MMCM), 
and 1 27-bit multiplier. An ASIC implementation of HELP synthesized with a commercial standard 
cell library, implemented using a glitch-free 32-bit column of AES as the source of entropy and with 
a 128-stage time-to-digital converter for timing, consists of 10,779 gates and 2476 FFs. 

Statistical Analysis 

Figure 12 illustrates two statistical metrics that relate to the randomness of the ABs and SKs 
generated by each Zybo board representing Alice, Bob, Charles, and the merchant. Figure 12a plots 
the Shannon entropy and the minimum entropy (titled ‘min-entropy’), while Figure 12b plots 
Hamming distance (HD) and the 3-σvariation associated with the HD distributions. These 

Figure 11. Average transaction times as measured by the bank.

The PUF-Cash deposit transaction time is proportional to (n + m), with n representing the number
of customers enrolled in the ATDB and m representing the number of deposited tokens. The time
to construct the SHDBi for each customer is approximately 2 ms, and the match time per token is
approximately 60 µs. This enables each processor to compute SHDBi at a rate of more than 500 per
second and to carry out token matching operations at a rate of more than 16,000 per second. These rates
were validated using a special run of the protocol in which the number of n2s in listn2s was allowed to
grow to sizes with more than 2 million tokens.

A separate run of the protocol was carried out for 63 h using 5000 tokens per transaction and
the database configured with 95 customers. The authentication bit-strings (ABs) from DHD_Authen
(Figure 4b) and session keys (SKs) from DHD_Key (Figure 5) generated by the 5 Zybo boards were
stored and analyzed using a set of statistical tests. Each of Alice, Bob, and Charles carried out 6422
fielded chip MA and SKG operations with the bank at a little over 100/h. The merchant mutually
authenticated 38,534 times, once each for a preauthorization and a deposit transaction, over the 63 h
test period at approximately 610/h, which is approximately once every 6 s. Note that these rates are
measured using only one processor of the 32 available on the server; therefore, significant speedups
can be achieved by introducing parallelism.

An open source version of 128-bit AES software was used to encrypt data as specified in the
protocol. All authentication bit-strings (ABs) and session keys (SKs) generated on the Zybo boards
were produced on-the-fly by a Zynq programmable logic implementation of HELP. The resource
utilization of HELP is 6500 Look-up Tables (LUTs), 1900 FF, 1 Mixed Mode Clock Manager (MMCM),
and 1 27-bit multiplier. An ASIC implementation of HELP synthesized with a commercial standard
cell library, implemented using a glitch-free 32-bit column of AES as the source of entropy and with a
128-stage time-to-digital converter for timing, consists of 10,779 gates and 2476 FFs.

Statistical Analysis

Figure 12 illustrates two statistical metrics that relate to the randomness of the ABs and SKs
generated by each Zybo board representing Alice, Bob, Charles, and the merchant. Figure 12a plots the
Shannon entropy and the minimum entropy (titled ‘min-entropy’), while Figure 12b plots Hamming
distance (HD) and the 3-σvariation associated with the HD distributions. These randomness statistics
are computed using the ABs and SKs generated within each 1 h time interval (x-axis) over the 63 h
testing period. The statistics using ABs are shown in blue, while those associated with the SKs are shown
in black. The results for the four fielded devices are plotted in separate curves and are super-imposed.
Note that the merchant generates only ABs so there are only three SK curves. The smallest bit-string



Cryptography 2019, 3, 18 21 of 24

size observed across all authentications is 185 bits and the average size is 240 bits. All session key sizes
are 128 bits.

Cryptography 2019, 4, x FOR PEER REVIEW 21 of 24 

 

randomness statistics are computed using the ABs and SKs generated within each 1 h time interval 
(x-axis) over the 63 h testing period. The statistics using ABs are shown in blue, while those associated 
with the SKs are shown in black. The results for the four fielded devices are plotted in separate curves 
and are super-imposed. Note that the merchant generates only ABs so there are only three SK curves. 
The smallest bit-string size observed across all authentications is 185 bits and the average size is 240 
bits. All session key sizes are 128 bits. 

 

Figure 12. (a) Entropy and min-entropy statistics and (b) Hamming distance (HD) statistics computed 
using groups of authentication bit-strings (ABs) and session keys (SKs) collected during each 1 h 
period over the 63 h test period. Approximately 100 bit-strings are used for each Alice, Bob, and 
Charles statistic and 610 bit-strings for the merchant. The authentication bit-strings vary in size but 
are at least 185 bits (average is 240 bits), while the session key bit-strings are always 128 bits. The HDs 
are computed using bit-strings generated by the same chip at different times. The number of HDs 
computed for each pairing of bit-strings in each 1 h interval is more than 5000 for Alice, Bob, and 
Charles and more than 185,000 for the merchant. 

Entropy and minimum entropy are computed using Equations (1) and (2), and the average 
values for each group of bit-strings are plotted in Figure 12a. Entropy and min-entropy both measure 
the information content in the bit-strings where values close to 1.0 indicate the information content 
is maximal and is the best result possible for bit-strings that need to exhibit true random behavior. 
The symbol NB represents the number of bits, which is 128 for AES session keys but varies for ABs. 
The AB entropy of approximately 0.998 is slightly better than the SK entropy of approximately 0.995, 
but both are near the ideal of 1.00. This trend is also reflected in the min-entropy results with AB min-
entropy larger on average (~0.95) than SK min-entropy (~0.91). 𝐻(𝑋) = ∑ − ∑ 𝑝 ∙ log 𝑝 ;  (1) 𝐻 (𝑋) = ∑ − log 𝑚𝑎𝑥 𝑝 . (2) 

Hamming distance is computed by pairing the bit-strings from each group under all 
combinations and then counting the number of differences in each pairing. Equation (3) gives the 
expression for HD with NB representing the smallest bit-string length among the groups of AB. For 
the SE HD, NB is fixed at 128. From Figure 12b, AB and SK HDs for each of the groups are at or very 
close to the ideal value of 0.50. The expected 3σ for SE HD using a binomial distribution is 3√2.5𝑁𝐵, 

which as a fraction is √ × .  =  0.13, so the data closely match the expected result. The expected 
3σ for AB HD using 240 bits (the average number) is 0.097, which is again a good match to the results. 𝐻𝐷 = ∙ ∑ ∑ ∑ , ⊕ ,  . (3) 

A long, concatenated set of AB and SK bit-strings were created using the 6422 individual bit-
strings from each fielded device. The four AB bit-strings are 3,373,776 bits long, while the three SK 
bit-strings are 822,016 bits long. The bit-strings were subjected to the 15 tests defined within the 

Figure 12. (a) Entropy and min-entropy statistics and (b) Hamming distance (HD) statistics computed
using groups of authentication bit-strings (ABs) and session keys (SKs) collected during each 1 h period
over the 63 h test period. Approximately 100 bit-strings are used for each Alice, Bob, and Charles
statistic and 610 bit-strings for the merchant. The authentication bit-strings vary in size but are at
least 185 bits (average is 240 bits), while the session key bit-strings are always 128 bits. The HDs
are computed using bit-strings generated by the same chip at different times. The number of HDs
computed for each pairing of bit-strings in each 1 h interval is more than 5000 for Alice, Bob, and
Charles and more than 185,000 for the merchant.

Entropy and minimum entropy are computed using Equations (1) and (2), and the average values
for each group of bit-strings are plotted in Figure 12a. Entropy and min-entropy both measure the
information content in the bit-strings where values close to 1.0 indicate the information content is
maximal and is the best result possible for bit-strings that need to exhibit true random behavior.
The symbol NB represents the number of bits, which is 128 for AES session keys but varies for ABs.
The AB entropy of approximately 0.998 is slightly better than the SK entropy of approximately 0.995,
but both are near the ideal of 1.00. This trend is also reflected in the min-entropy results with AB
min-entropy larger on average (~0.95) than SK min-entropy (~0.91).

H(X) =
2048∑
i=1

− 1∑
j=0

pi j· log2 pi j

; (1)

H∞(X) =
2048∑
i=1

(
− log2

(
max

(
pi j

)))
. (2)

Hamming distance is computed by pairing the bit-strings from each group under all combinations
and then counting the number of differences in each pairing. Equation (3) gives the expression for HD
with NB representing the smallest bit-string length among the groups of AB. For the SE HD, NB is
fixed at 128. From Figure 12b, AB and SK HDs for each of the groups are at or very close to the ideal
value of 0.50. The expected 3σ for SE HD using a binomial distribution is 3

√
2.5NB, which as a fraction

is 3
√

128×0.25
128 = 0.13, so the data closely match the expected result. The expected 3σ for AB HD using

240 bits (the average number) is 0.097, which is again a good match to the results.

HD =

 1
NCC

·

NC∑
i=1

NC∑
j=i+1

(∑NB
k=1

(
BSi,k ⊕ BS j,k

))
NB

. (3)

A long, concatenated set of AB and SK bit-strings were created using the 6422 individual bit-strings
from each fielded device. The four AB bit-strings are 3,373,776 bits long, while the three SK bit-strings



Cryptography 2019, 3, 18 22 of 24

are 822,016 bits long. The bit-strings were subjected to the 15 tests defined within the National Institute
of Standards and Technology (NIST) statistical test suite [30] to evaluate randomness, and all tests
were passed.

Interchip HD measures uniqueness of the bit-strings from one fielded device to another, in contrast
to the HDs reported above, which measure randomness on each device. The Interchip HDs computed
using the AB bit-strings for four fielded devices is 0.5000 and using the SK bit-strings for three fielded
devices is 0.4995. A reliability analysis included in prior work [3] depicts bit flip error probabilities at
less than 1 in a million (1× 10−6) for HELP when evaluated across industrial-level specifications for
supply voltage and temperature.

7. Conclusions

A PUF-based e-cash protocol, called PUF-Cash, is proposed and evaluated on FPGAs using metrics
related to performance, area overhead, and security. The latter is measured by analyzing the statistical
characteristics of the generated authentication bit-strings and session keys using the NIST statistical
test suite and techniques that measure entropy, min-entropy, and hamming distance. The PUF-Cash
implementation is shown (1) to meet acceptable time constraints associated with a commercial e-cash
system, (2) to have low FPGA resource utilization, and (3) to possess robust statistical properties.
PUF-Cash represents the first PUF-based protocol for e-cash systems and presents novel techniques for
providing anonymity, for increasing robustness to model-building attacks, and for reducing computing
complexity on resource-constrained customer devices. Experimental results indicate that PUF cash is
resilient, scalable, and can be fielded on commercially available hardware. Future work will focus on
token transitivity to enable Alice->Bob->Charlie transfers and PUF-based field authentication between
Alice and Bob, negating the need for external certificate-based authentication layers.

Author Contributions: Conceptualization, J.P. and C.M.; methodology, J.P., C.M., and J.C.; software, J.P. and F.S.;
validation, J.P. and W.C.; formal analysis, C.M. and J.P., C.H. investigation, J.P., C.H., and C.M.; resources, J.P. and
F.S.; data curation, J.P. and F.S.; writing—original draft preparation, J.P. and C.M.; writing—J.C., J.P., C.M., and
X.X.; visualization, J.C. and W.C.; supervision, J.P.; project administration, J.P.; funding acquisition, none.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Gassend, B.; Clarke, D.E.; Van Dijk, M.; Devadas, S. Silicon Physical Random Functions. In Proceedings of
the Conference on Computer and Communications Security, New York, NY, USA, 18–22 November 2002;
pp. 148–160.

2. Aarestad, J.; Ortiz, P.; Acharyya, D.; Plusquellic, J. HELP: A Hardware-Embedded Delay-Based PUF.
Des. Test Comput. 2013, 30, 17–25. [CrossRef]

3. Che, W.; Martin, M.; Pocklassery, G.; Kajuluri, V.K.; Saqib, F.; Plusquellic, J. A Privacy-Preserving, Mutual
PUF-Based Authentication Protocol. Cryptography 2017, 1, 3. [CrossRef]

4. Chaum, D. Security Without Identification: Transaction Systems to Make Big Brother Obsolete. Commun. ACM
1987, 28, 1030–1044. [CrossRef]

5. Chaum, D. Blind Signatures for Untraceable Payments. In Advances in Cryptology; Springer: Boston, MA,
USA, 1982.

6. Chaum, D.; Fiat, A.; Naor, M. Untraceable Electronic Cash. In Advances in Cryptology—CRYPTO’ 88, Proceedings
of the Conference on the Theory and Application of Cryptography, Santa Barbara, CA, USA, 21–25 August 1988;
Springer: Berlin/Heidelberg, Germany, 1988; pp. 319–327.

7. Schoenmaker, B. Security Aspects of the e-cash Payment System. In State of the Art in Applied Cryptography;
Springer: Berlin/Heidelberg, Germany, 1998; Volume 1528, pp. 338–352.

http://dx.doi.org/10.1109/MDT.2013.2247459
http://dx.doi.org/10.3390/cryptography1010003
http://dx.doi.org/10.1145/4372.4373


Cryptography 2019, 3, 18 23 of 24

8. Brands, S. Untraceable Off-Line Cash in Wallet with Observers. In Proceedings of the International Cryptology
Conference on Advances in Cryptology, Santa Barbara, CA, USA, 22–26 August 1993; pp. 302–318.

9. Pointcheval, D.; Stern, J. Provably Secure Blind Signature Schemes. Adv. Cryptol. 1996, 1163, 252–265.
10. Camenisch, J.; Lysanskaya, A.; Meyerovich, M. Endorsed E-Cash IEEE Symposium on Security and Privacy; IEEE:

Berkeley, CA, USA, 2007.
11. Fujisaki, E.; Okamoto, T. Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations.

Adv. Cryptogr. 1997, 1294, 16–30.
12. Okamoto, T. An efficient divisible electronic cash scheme. In Advances in Cryptology—CRYPT0’ 95, Proceedings

of the Annual International Cryptology Conference, Santa Barbara, CA, USA, 27–31 August 1995; Springer:
Berlin/Heidelberg, Germany, 1995; pp. 438–451.

13. Ruckert, M. Lattice-based Blind Signatures. In Proceedings of the AsiaCrypt, Singapore, 5–9 December 2010.
14. Yang, B.; Yang, K.; Zhang, Z.; Qin, Y.; Feng, D. AEP-M: Practical Anonymous E-Payment for Mobile Devices

using ARM TrustZone and Divisible E-Cash, Information Security. In Information Security, Proceedings
of the International Conference on Information Security, Honolulu, HI, USA, 3–6 September 2016; Springer:
Berlin/Heidelberg, Germany, 2016; pp. 130–146.

15. Sakalauskas, E.; Muleravicius, J.; Timofejeva, I. Computational Resources for Mobile E-Wallet System with
Observers. In Proceedings of the Electronics, Palanga, Lithuania, 19–21 June 2017.

16. Rührmair, U.; Sehnke, F.; Sölter, J.; Dror, G.; Devadas, S.; Schmidhuber, J. Modeling Attacks on Physical
Unclonable Functions. In Proceedings of the 17th ACM Conference on Computer and Communications
Security, Chicago, IL, USA, 4–8 October 2010; pp. 237–249.

17. Plusquellic, J.; Areno, M. Correlation-Based Robust Authentication (Cobra) Using Helper Data Only. Available
online: http://www.mdpi.com/2410-387X/2/3/21 (accessed on 21 February 2018).

18. Bolotny, L.; Robins, G. Physically Unclonable Function-based Security and Privacy in RFID Systems.
In Proceedings of the PerCom, White Plains, NY, USA, 19–23 March 2007; pp. 211–220.

19. Hammouri, G.; Ozturk, E.; Sunar, B. A Tamper-Proof and Lightweight Authentication Scheme. Pervasive Mob.
Comput. 2008, 4, 807–818. [CrossRef]

20. Sadeghi, A.-R.; Visconti, I.; Wachsmann, C. Enhancing RFID Security and Privacy by Physically Unclonable
Functions. Inf. Secur. Cryptogr. 2010, 23, 281–305.

21. Kocabas, U.; Peter, A.; Katzenbeisser, S.; Sadeghi, A. Converse PUF-Based Authentication. In Trust and
Trustworthy Computing, Proceedings of the International Conference on Trust and Trustworthy Computing, Vienna,
Austria, 13–15 June 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 142–158.

22. Majzoobi, M.; Rostami, M.; Koushanfar, F.; Wallach, D.S.; Devadas, S. Slender PUF Protocol: A Lightweight,
Robust, and Secure Authentication by Substring Matching. In Proceedings of the Symposium on Security
and Privacy Workshop, San Francisco, CA, USA, 24–25 May 2012; pp. 33–44.

23. Aysu, A.; Gulcan, E.; Moryama, D.; Schaumont, P. Compact and Low-power ASIP Design for Lightweight
PUF-based Authentication Protocols. IET Inf. Secur. 2016, 10, 232–241. [CrossRef]

24. Che, W.; Martinez-Ramon, M.; Saqib, F.; Plusquellic, J. Delay Model and Machine Learning Exploration of a
Hardware-Embedded Delay PUF. In Proceedings of the International Symposium on Hardware-Oriented
Security and Trust, Washington, DC, USA, 30 April–4 May 2018.

25. Che, W.; Kajuluri, V.K.; Saqib, F.; Plusquellic, J. Leveraging Distributions in Physical Unclonable Functions.
Cryptography 2017, 1, 17. [CrossRef]

26. Rührmair, U.; Xu, X.; Solter, J.; Mahmoud, A.; Majzoobi, M.; Koushanfar, F.; Burleson, W. Efficient Power
and Timing Side Channels for Physical Unclonable Functions. In Cryptographic Hardware and Embedded
Systems–CHES 2014, Proceedings of the International Workshop on Cryptographic Hardware and Embedded Systems,
Busan, Korea, 23–26 September 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 476–492.

27. Rostami, M.; Majzoobi, M.; Koushanfar, F.; Wallach, D.; Devadas, S. Robust and Reverse-Engineering
Resilient PUF Authentication and Key-Exchange by Substring Matching. IEE Trans. Emerg. Top. Comput.
2014, 2, 37–49. [CrossRef]

http://www.mdpi.com/2410-387X/2/3/21
http://dx.doi.org/10.1016/j.pmcj.2008.07.001
http://dx.doi.org/10.1049/iet-ifs.2015.0401
http://dx.doi.org/10.3390/cryptography1030017
http://dx.doi.org/10.1109/TETC.2014.2300635


Cryptography 2019, 3, 18 24 of 24

28. Delvaux, J. Machine-Learning Attacks on PolyPUFs, OB-PUFs, RPUFs, LHS-PUFs, and PUF-FSMs. Trans. Inf.
Forensics Secur. 2019, 14, 2043–2058. [CrossRef]

29. Mangard, S.; Oswald, E.; Popp, T. Power Analysis Attacks: Revealing the Secrets of Smart Cards; Springer:
Berlin/Heidelberg, Germany, 2007.

30. Bassham, L.; Rukhin, A.; Soto, J.; Nechvatal, J.; Smid, M.; Barker, E.; Leigh, S.; Levenson, M.; Vangel, M.;
Banks, D.; et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic
Applications. Available online: https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final (accessed on
15 April 2010).

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIFS.2019.2891223
https://csrc.nist.gov/publications/detail/sp/800-22/rev-1a/final
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Literature Review 
	Electronic Cash 
	Physical Unclonable Function (PUF)-Based Authentication and Key Generation 

	HELP and Authentication Protocols 
	PUF Architecture and Soft Data 
	Enrollment and Regeneration 
	Bit-String Generation 
	Device Authentication Using Cobra 
	Bank Authentication Using DHD_Authen 
	Session Key Generation Using DHD_Key 

	PUF-Based e-Cash Transaction Protocol (PUF-Cash) 
	Attack Surface Analysis 
	Overview 
	Operational Example 
	Protocol Guarantees 
	XOR Exchange Security 
	Uniqueness 
	Anonymity 
	Counterfeiting 
	Double-Spending 
	Network Attack Vectors 
	Platform Attack Vectors 


	Experimental Results 
	Conclusions 
	References

